Ecology and Environment ›› 2021, Vol. 30 ›› Issue (11): 2195-2203.DOI: 10.16258/j.cnki.1674-5906.2021.11.010
• Research Articles • Previous Articles Next Articles
ZHOU Yingtong(), WANG Yan, SUN Mingyu, SAN Yu, YAO Xingzhou, ZHAO Tianhong
Received:
2021-06-11
Online:
2021-11-18
Published:
2021-12-29
Contact:
ZHAO Tianhong
通讯作者:
赵天宏
作者简介:
周映彤(1997年生),女,硕士研究生,研究方向为农业生态系统生态学。E-mail: 1121705386@qq.com
基金资助:
CLC Number:
ZHOU Yingtong, WANG Yan, SUN Mingyu, SAN Yu, YAO Xingzhou, ZHAO Tianhong. Effect of Ozone Concentration Increasing Near the Ground on Antioxidant System of Parent and Offspring Soybean Leaves[J]. Ecology and Environment, 2021, 30(11): 2195-2203.
周映彤, 王岩, 孙铭禹, 伞昱, 姚星州, 赵天宏. 近地层臭氧浓度升高对亲子代大豆叶片抗氧化系统的影响[J]. 生态环境学报, 2021, 30(11): 2195-2203.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.11.010
Fig. 1 Variation of relative electrical conductivity and MDA content in parent and offspring soybean leaves under different ozone concentration S1: soybean parent; S0: soybean progeny. Different small letters in the rows show the significance of different treatments at P<0. 05 level, respectively. CK: ozone concentration: 45 nL·L-1; T1: ozone concentration :(80±10) nL·L-1; T2: ozone concentration: (120±10) nL·L-1. n=3,The same below
因素 Factor | 自由度 df | 显著性Significance | ||||||
---|---|---|---|---|---|---|---|---|
外渗电导率Relative electrical conductivity | MDA含量 MDA content | H2O2含量H2O2 content | O2∙-产生速率O2∙- production | SOD活性 SOD activity | CAT活性 CAT activity | POD活性 POD activity | ||
O3 | 2 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Generation | 1 | <0.01 | 0.049 | 0.050 | <0.01 | <0.01 | 0.016 | 0.010 |
Stage | 2 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
O3×Generation | 2 | 0.674 | 0.875 | 0.431 | 0.062 | 0.294 | 0.048 | 0.405 |
O3×Stage | 4 | 0.023 | 0.981 | 0.764 | 0.059 | <0.01 | <0.01 | 0.696 |
Generation×Stage | 2 | 0.010 | 0.818 | 0.279 | 0.439 | <0.01 | 0.878 | 0.238 |
O3×Generation×Stage | 4 | 0.080 | 0.732 | 0.998 | 0.970 | 0.544 | 0.836 | 0.583 |
Table 1 Variance analysis of three factors and their interaction on the antioxidant indexes of parent and offspring soybean leaves
因素 Factor | 自由度 df | 显著性Significance | ||||||
---|---|---|---|---|---|---|---|---|
外渗电导率Relative electrical conductivity | MDA含量 MDA content | H2O2含量H2O2 content | O2∙-产生速率O2∙- production | SOD活性 SOD activity | CAT活性 CAT activity | POD活性 POD activity | ||
O3 | 2 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Generation | 1 | <0.01 | 0.049 | 0.050 | <0.01 | <0.01 | 0.016 | 0.010 |
Stage | 2 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
O3×Generation | 2 | 0.674 | 0.875 | 0.431 | 0.062 | 0.294 | 0.048 | 0.405 |
O3×Stage | 4 | 0.023 | 0.981 | 0.764 | 0.059 | <0.01 | <0.01 | 0.696 |
Generation×Stage | 2 | 0.010 | 0.818 | 0.279 | 0.439 | <0.01 | 0.878 | 0.238 |
O3×Generation×Stage | 4 | 0.080 | 0.732 | 0.998 | 0.970 | 0.544 | 0.836 | 0.583 |
指标 Index | 相关系数 (r) Correlation coefficient | ||||||
---|---|---|---|---|---|---|---|
外渗电导率 Relative electrical conductivity | MDA含量 MDA content | H2O2含量 H2O2 content | O2∙-产生速率 O2∙- production | SOD活性 SOD activity | CAT活性 CAT activity | POD活性 POD activity | |
外渗电导率 Relative electrical conductivity | 1 | 0.667** | 0.584** | 0.660** | -0.636** | -0.533** | 0.412* |
MDA含量 MDA content | 1 | 0.849** | 0.814** | -0.713** | -0.686** | 0.018 | |
H2O2含量 H2O2 content | 1 | 0.837** | -0.807** | -0.851** | -0.134 | ||
O2∙-产生速率 O2∙- production | 1 | -0.802** | -0.799** | -0.126 | |||
SOD活性 SOD activity | 1 | 0.856** | 0.296 | ||||
CAT活性 CAT activity | 1 | 0.285 | |||||
POD活性 POD activity | 1 |
Table 2 Correlation between indexes of anti-oxidation in parent soybean leaves
指标 Index | 相关系数 (r) Correlation coefficient | ||||||
---|---|---|---|---|---|---|---|
外渗电导率 Relative electrical conductivity | MDA含量 MDA content | H2O2含量 H2O2 content | O2∙-产生速率 O2∙- production | SOD活性 SOD activity | CAT活性 CAT activity | POD活性 POD activity | |
外渗电导率 Relative electrical conductivity | 1 | 0.667** | 0.584** | 0.660** | -0.636** | -0.533** | 0.412* |
MDA含量 MDA content | 1 | 0.849** | 0.814** | -0.713** | -0.686** | 0.018 | |
H2O2含量 H2O2 content | 1 | 0.837** | -0.807** | -0.851** | -0.134 | ||
O2∙-产生速率 O2∙- production | 1 | -0.802** | -0.799** | -0.126 | |||
SOD活性 SOD activity | 1 | 0.856** | 0.296 | ||||
CAT活性 CAT activity | 1 | 0.285 | |||||
POD活性 POD activity | 1 |
指标 Index | 相关系数 (r) Correlation coefficient | ||||||
---|---|---|---|---|---|---|---|
外渗电导率 Relative electrical conductivity | MDA含量 MDA content | H2O2含量 H2O2 content | O2∙-产生速率 O2∙- production | SOD活性 SOD activity | CAT活性 CAT activity | POD活性 POD activity | |
外渗电导率 Relative electrical conductivity | 1 | 0.702** | 0.596** | 0.644** | -0.626** | -0.616** | 0.506* |
MDA含量 MDA content | 1 | 0.723** | 0.724** | -0.671** | -0.743** | 0.047 | |
H2O2含量 H2O2 content | 1 | 0.728** | -0.632** | -0.751** | -0.138 | ||
O2∙-产生速率 O2∙- production | 1 | -0.848** | -0.892** | -0.206 | |||
SOD活性 SOD activity | 1 | 0.825** | 0.056 | ||||
CAT活性 CAT activity | 1 | 0.259 | |||||
POD活性 POD activity | 1 |
Table 3 Correlation between indexes of anti-oxidation in offspring soybean leaves
指标 Index | 相关系数 (r) Correlation coefficient | ||||||
---|---|---|---|---|---|---|---|
外渗电导率 Relative electrical conductivity | MDA含量 MDA content | H2O2含量 H2O2 content | O2∙-产生速率 O2∙- production | SOD活性 SOD activity | CAT活性 CAT activity | POD活性 POD activity | |
外渗电导率 Relative electrical conductivity | 1 | 0.702** | 0.596** | 0.644** | -0.626** | -0.616** | 0.506* |
MDA含量 MDA content | 1 | 0.723** | 0.724** | -0.671** | -0.743** | 0.047 | |
H2O2含量 H2O2 content | 1 | 0.728** | -0.632** | -0.751** | -0.138 | ||
O2∙-产生速率 O2∙- production | 1 | -0.848** | -0.892** | -0.206 | |||
SOD活性 SOD activity | 1 | 0.825** | 0.056 | ||||
CAT活性 CAT activity | 1 | 0.259 | |||||
POD活性 POD activity | 1 |
[1] |
AGATHOKLEOUS E, SAITANIS C J, 2020. Plant susceptibility to ozone: A tower of babel?[J]. Science of The Total Environment, DOI: 10.1016/j.scitotenv.2019.134962.
DOI |
[2] |
ALESSANDRA C, LORENZO C, ELISA P, et al., 2018. Phenylpropanoids are key players in the antioxidant defense to ozone of European ash, Fraxinus excelsior[J]. Environmental Science and Pollution Research, 25(9): 8137-8147.
DOI URL |
[3] | ALONSO R, ELVIRA S, CARTILLO F J, et al., 2001. Interactive effects of ozone and drought stress on pigments and activities of antioxidantive enzymes in Pinus halepensis[J]. Plant Cell & Environment, 24(9): 905-916. |
[4] |
ALSCHER R G, ERTURK N, HEATH L S, 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants[J]. Journal of Experimental Botany, 53(372): 1331-1341.
DOI URL |
[5] | ASADA K, 1999. The water- water cycle in chlorplasts: Scavenging of active oxygens and dissipation of excess photons[J]. Annual Review of Plant Physiologyand Plant Molecular Biology, 50: 601-639. |
[6] |
BASSIN S, VOLK M, FUHRER J, 2007. Factors affecting the ozone sensitivity of temperate European grasslands: An overview[J]. Environmental Pollution, 146(3): 678-691.
DOI URL |
[7] | BERGMANN E, BENDER J, WEIGEL H J, et al., 2017. Impact of tropospheric ozone on terrestrial biodiversity: A literature analysis to identify ozone sensitive taxa[J]. Journal of Applied Botany and Food Quality, 90: 83-105. |
[8] |
BETZELBERGER A M, YENDREK C R, MELLO T R, et al., 2012. Ozone Exposure Response for U.S. Soybean Cultivars: Linear Reductions in Photosynthetic Potential, Biomass, and Yield[J]. Plant Physiology, 160(4): 1827-1839.
DOI URL |
[9] |
CAKMAK I, HORST W J, 1991. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max)[J]. Physiologia Plantarum, 83(3): 463-468.
DOI URL |
[10] |
CALATAYUD A, BARRENO E, 2001. Chlorophyll a fluorescence,antioxidant enzymes and lipid peroxidation in tomato in response to ozone and benomy[J]. Environmental Pollution, 115(2): 283-289.
DOI URL |
[11] |
CHEN Z Y, ZHUANG Y, XIE X M, et al., 2019. Understanding long-term variations of meteorological influences on ground ozone concentrations in Beijing During 2006-2016 [J]. Environmental Pollution, 245: 29-37.
DOI URL |
[12] |
DAVISON A W, BARNES J D, 1998. Effects of ozone on wild plants[J]. New Phytologist, 139(1): 135-151.
DOI URL |
[13] | DE SOUZA I R, MACADAM J W, 2001. Gibberellic acid and dwarfism effects on the growth dynamics of B73 maize (Zea mays L.) leaf blades: A transient increase in apoplastic peroxidase activity precedes cessation of cell elongation[J]. Journal of Experimental Botany, 52(361): 1673-1682. |
[14] |
DUQUE L, POELMAN E H, STEFFAN-DEWENTER I, et al., 2021. Effects of ozone stress on flowering phenology, plant-pollinator interactions and plant reproductive success[J]. Environmental Pollution, DOI: 10.1016/j.envpol.2020.115953.
DOI |
[15] |
ELISA P, ALICE T, ALESSANDRA C, et al., 2013. Signaling molecules and cell death in Melissa officinalis plants exposed to ozone[J]. Plant Cell Reports, 32(12): 1965-1980.
DOI URL |
[16] |
FENG Z Z, SHANG B, LI Z Z, et al., 2019. Ozone will remain a threat for plants independently of nitrogen load[J]. Functional Ecology, 33(10): 1854-1870.
DOI URL |
[17] |
FENG Z Z, AGATHOKLEOUS E, YUE X, et al., 2021. Emerging challenges of ozone impacts on asian plants: Actions are needed to protect ecosystem health[J]. Ecosystem Health and Sustainability, DOI: 10.1080/20964129. 2021.1911602.
DOI |
[18] | FISCUS E L, BOOKER F L, BURKEY K O, et al., 2005. Crop responses to ozone: Uptake, modes of action, carbon assimilation and partitioning[J]. Plant Cell & Environment, 28(8): 997-1011. |
[19] |
ELINA H, FREIWALD V, JULKUNEN-TIITTO R, et al., 2009. Differences in leaf characteristics between ozone-sensitive and ozone-tolerant hybrid aspen (Populus tremula×Populus tremuloides) clones[J]. Tree Physiology, 29(1): 53-66.
DOI URL |
[20] | HEATH R L, TAYLOR G E, 1997. Physiological processes and plant responses to ozone exposure[J]. Ecological Studies, 127: 317-368. |
[21] |
KEUTGEN A J, PAWELZIK E, 2008. Apoplastic antioxidative system responses to ozone stress in strawberry leaves[J]. Journal of Plant Physiology, 165(8): 868-875.
DOI URL |
[22] | LEFFOHN A S, MALLEY C S, SMITH L, et al., 2018. Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop-ecosystem research[J]. Elementa: Science of the Anthropocene, 6(1): 28. |
[23] |
LI P, CALATAYUD V, GAO F, et al., 2016. Differences in ozone sensitivity among woody species are related to leaf morphology and antioxidant levels[J]. Tree Physiology, 36(9): 1105-1116.
DOI URL |
[24] |
LIU R Y, MA Z W, LIU Y, et al., 2020. Spatiotemporal distributions of surface ozone levels in China from 2005 to 2017: A machine learning approach[J]. Environment International, DOI: 10.1016/j.envint.2020. 105823.
DOI |
[25] |
LOW P S, MERIDA J R, 1996. The oxidative burst in plant defense: Function and signal transduction[J]. Physiologia Plantarum, 96(3): 533-542.
DOI URL |
[26] | LU X, ZHANG L, WANG X L, et al., 2020. Rapid Increases in Warm-Season Surface Ozone and Resulting Health Impact in China Since 2013 [J]. Environmental Science & Technology Letters, 7(4): 240-247. |
[27] |
MILLS G, SHARPS K, DAVID S, et al., 2018. Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance[J]. Global Change Biology, 24(10): 4869-4893.
DOI URL |
[28] |
OKSANEN E, MANNINEN S, VAPAAVUORI E, et al., 2009. Near-ambient ozone concentrations reduce the vigor of Betula and Populus species in Finland[J]. Ambio: A Journal of the Human Environment, 38(8): 413-417.
DOI URL |
[29] | RANIERI A, NALI C, LORENZINI G, et al., 1996. Ozone stimulates apoplastic antioxidant systems in pumpkin leaves[J]. Physiol Plant, 97(2): 381-387. |
[30] |
SAIRAM R K, SRIVASTAVA G C, 2002. Changes in antioxidant activity in sub cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress[J]. Plant Science, 162(6): 897-904.
DOI URL |
[31] | SHARPS K, HAYES F, HARMENS H, et al., 2021. Ozone-induced effects on leaves in African crop species[J]. Environmental Pollution, 268 (Pt A): 115789. 1-115789.9. |
[32] |
SILLMAN S, 1999. The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments[J]. Atmospheric Environment, 33(12): 1821-1845.
DOI URL |
[33] |
SUZUKI N, RIVERO R M, SHULAEV V, et al., 2014. Abiotic and biotic stress combinations[J]. New Phytol, 203(1): 32-43.
DOI URL |
[34] |
TARASICK D, GALBALLY L E, COOPER O R, et al., 2019. Tropospheric Ozone Assessment Report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties[J]. Elem Sci Anth, 7(1): 39.
DOI URL |
[35] |
TRAINER M, PARRISH D D, GOLDAN P D, et al., 2000. Review of observation-based analysis of the regional factors influencing ozone concentrations[J]. Atmospheric Environment, 34(12-14): 2045-2061.
DOI URL |
[36] | 贾桂霞, 杨俊明, 沈熙环, 2003. 落叶松种间交配结实力变异和自交衰退的研究[J]. 林业科学, 39(1): 62-68. |
JIA G X, YANG J M, SHEN X H, 2003. Study on the mating strength variation and automating decline of the larch species[J]. Forestry Science, 39(1): 62-68. | |
[37] | 姬东华, 薛亚东, 郑用琏, 等, 2013. 玉米初级作图群体的籽粒性状遗传效应分析[J]. 华中农业大学学报, 32(4): 1-5. |
JI D H, XUE Y D, ZHENG Y L, et al., 2013. Genetic analysis of grain related traits of a maize primary mapping population[J]. Journal of Huazhong Agricultural University, 32(4): 1-5. | |
[38] | 秦子晴, 徐胜, 齐淑艳, 等, 2020. 臭氧和增温对醉蝶花 (Cleome spinosa) 氧化伤害及抗氧化酶活的影响[J]. 生态学杂志, 39(3): 830-837. |
QIB Z Q, XU S, QI S Y, et al., 2020. Effect of Ozone and Temperature on oxidative injury and antioxidant enzyme activity of Drunken Butterfly Flower (Cleome spinosa)[J]. Journal of Ecology, 39 (3): 830-837. | |
[39] | 阮亚男, 何兴元, 陈玮, 等, 2009. 臭氧浓度升高对油松抗氧化系统活性的影响[J]. 应用生态学报, 20(5): 1032-1037. |
RUAN Y N, HE X Y, CHEN W, et al., 2009. Effect of increased ozone concentration on the activity of oil pine antioxidant system[J]. Journal of Applied Ecology, 20(5): 1032-1037. | |
[40] | 宋琎楠, 陆启环, 王中新, 等, 2018. 臭氧水浇灌对韭菜幼苗抗氧化酶活性及营养成分的影响[J]. 中国瓜菜, 31(4): 16-18. |
SONG J N, LU Q H, WANG Z X, et al., 2018. Effect of Ozone Water Irrigation on Antioxidase Activity and Nutrients of Leek Seedlings[J]. Chinese Melon and Vegetables, 31(4): 16-18. | |
[41] | 孙加伟, 赵天宏, 付宇, 等, 2008. 臭氧浓度升高对玉米活性氧代谢及抗氧化酶活性的影响[J]. 农业环境科学学报, 27(5): 1929-1934. |
SUN J W, ZHAO T H, FU Y, et al., 2008. Effect of elevated ozone concentration on reactive oxygen metabolism and antioxidase activity of corn[J]. Journal of Agricultural Environmental Sciences, 27(5): 1929-1934. | |
[42] | 王俊力, 陈桂发, 刘福兴, 等, 2016. 臭氧氧化猪场处理尾水对苦草 (Vallisneria spiralis) 抗氧化系统的影响[J]. 农业环境科学学报, 35(12): 2299-2305. |
WANG J L, CHEN G F, LIU F X, et al., 2016. Effect of Ozone Oxidation Pig Farm Handling Tailing Water on Bitter Grass (Vallisneria spiralis) antioxidant System[J]. Journal of Agricultural Environmental Sciences, 35(12): 2299-2305. | |
[43] | 王俊力, 王岩, 赵天宏, 等, 2011. 臭氧胁迫对大豆叶片抗坏血酸-谷胱甘肽循环的影响[J]. 生态学报, 31(8): 2068-2075. |
WANG J L, WANG Y, ZHAO T H, et al., 2011. Effect of Ozone Stress on ascorbate-glutathione circulation in soybean leaves[J]. Journal of Ecology, 31(8): 2068-2075. | |
[44] | 王浩, 2013. 自交衰退新解[J]. 分子植物育种, 11(5): 630-637. |
WANG H, 2013. New solution to the self-surrender recession[J]. Molecular Plant Breeding, 11(5): 630-637. | |
[45] | 徐玲, 赵天宏, 胡莹莹, 等, 2008. 高浓度臭氧对春小麦膜脂过氧化和抗氧化系统的影响[J]. 干旱地区农业研究, 26(2): 74-78. |
XU L, ZHAO T H, HU Y Y, et al., 2008. Effect of high concentration ozone on lipid peroxidation and antioxidant system in spring wheat[J]. Agricultural Studies in Arid Areas, 26(2): 74-78. | |
[46] | 徐雁飞, 陈发棣, 滕年军, 等, 2009. 菊花自交衰退现象初步研究[J]. 植物资源与环境学报, 18(4): 28-32. |
XU Y F, CHEN F D, TENG N J, et al., 2009. Preliminary study on inbreeding depression of Dendranthema morifolium[J]. Journal of Plant Resources and Environment, 18(4): 28-32. | |
[47] | 杨舒贻, 陈晓阳, 惠文凯, 等, 2016. 逆境胁迫下植物抗氧化酶系统响应研究进展[J]. 福建农林大学学报: 自然科学版, 45(5): 481-489. |
YANG S Y, CHEN X Y, HUI W K, et al., 2016. Progress in responses of antioxidant enzyme systems in plant to environmental stresses[J]. Journal of Fu-jian Agriculture and Forestry University: Natural Science Edition, 45(5): 481-489. | |
[48] | 于涛, 2010. 臭氧浓度升高对银杏抗氧化能力的影响[J]. 现代农业科技 (10): 186, 192. |
YU T, 2010. Effect of increased ozone concentration on the antioxidant capacity of ginkgo[J]. Modern Agricultural Technology (10): 186, 192. | |
[49] | 张国范, 刘述锡, 刘晓, 等, 2003. 海湾扇贝自交家系的建立和自交效应[J]. 中国水产科学, 10(6): 441-445. |
ZHANG G F, LIU S X, LIU X, et al., 2003. Self-fertilization family establishment and its depression in bay scallop Argopecten irradians[J]. Journal of Fishery Sciences of China, 10(6): 441-445. | |
[50] |
张巍巍, 郑飞翔, 王效科, 等, 2009. 臭氧对水稻根系活力、可溶性蛋白含量与抗氧化系统的影响[J]. 植物生态学报, 33(3): 425-432.
DOI |
ZHANG W W, ZHENG F X, WANG X K, et al., 2009. Effect of Ozone on Root Vitality, soluble Protein Content and antioxidant System in Rice[J]. Botanical Ecology, 33(3): 425-432. | |
[51] | 赵天宏, 金东艳, 王岩, 等, 2011. 臭氧胁迫对大豆酚类化合物含量和抗氧化能力的影响[J]. 中国农业科学, 44(4): 708-715. |
ZHAO T H, JIN D Y, WANG Y, et al., 2011. Effect of Ozone stress on the content and antioxidant capacity of soybean phenolic compounds[J]. China Agricultural Science, 44(4): 708-715. | |
[52] | 郑有飞, 胡程达, 吴荣军, 等, 2010. 臭氧胁迫对冬小麦光合作用、膜脂过氧化和抗氧化系统的影响[J]. 环境科学, 31(7): 1643-1651. |
ZHENG Y F, HU C D, WU R J, et al., 2010. Effect of Ozone Stress on Photosynthesis, Membrane Fat Peroxidation, and Antioxidant Systems in Winter Wheat[J]. Environmental Sciences, 31(7): 1643-1651. | |
[53] | 周慧敏, 李品, 高峰, 等, 2018. 臭氧和干旱交互作用对杨树叶片抗氧化酶活性的影响[J]. 环境科学, 39(9): 4359-4365. |
ZHOU H M, LI P, GAO F, et al., 2018. Effect of ozone and drought interaction on antioxidase activity of poplar leaves[J]. Environmental Sciences, 39(9): 4359-4365. |
[1] | LI Chengcheng, ZHANG Zirui, SONG Xiaoxuan, KONG Juanjuan, HAN Yang, RUAN Yanan. Effects of Ozone Stress on Antioxidant Metabolism and Reproductive Growth of Soybean [J]. Ecology and Environment, 2022, 31(7): 1383-1392. |
[2] | LIU Jiang, ZHU Lijie, ZHANG Kai, WANG Xiaoming, WANG Liwei, GAO Xining. Effects of Drought Stress/Rewatering on Photosynthetic Characteristics and Yield of Soybean at Different Growth Stages [J]. Ecology and Environment, 2022, 31(2): 286-296. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn