| [1] |
AIYER K S, 2021. Synergistic effects in a microbial fuel cell between co-cultures and a photosynthetic alga Chlorella vulgaris improve performance[J]. Heliyon, 7(1): e05935.
|
| [2] |
ASIMAKIS E, SHEHATA A A, EISENREICH W, et al., 2022. Algae and Their Metabolites as Potential Bio-Pesticides[J]. Microorganisms, 10(2): 307.
|
| [3] |
CHANDRASEKARAN M, BELACHEW S T, YOON E, et al., 2018. Expression of β-1,3-glucanase (GLU) and phenylalanine ammonia-lyase (PAL) genes and their enzymes in tomato plants induced after treatment with Bacillus subtilis CBR05 against Xanthomonas campestris pv. Vesicatoria[J]. Journal of General Plant Pathology, 83(1): 7-13.
DOI
URL
|
| [4] |
CHEN X L, LAWRENCE J M, WEY L T, et al., 2022. 3D-printed hierarchical pillar array electrodes for high-performance semi-artificial photosynthesis[J]. Nature Materials, 21(7): 811-818.
DOI
PMID
|
| [5] |
CHIRANJEEVI P, PATIL S A, 2020. Strategies for improving the electroactivity and specific metabolic functionality of microorganisms for various microbial electrochemical technologies[J]. Biotechnology Advances, 39: 107468.
DOI
URL
|
| [6] |
EGHTESADI N, OLAIFA K, PHAM T T, et al., 2024. Osmoregulation by choline-based deep eutectic solvent induces electroactivity in Bacillus subtilis biofilms[J]. Enzyme and Microbial Technology, 180: 110485.
DOI
URL
|
| [7] |
ZHANG-GE S J, CAI T Y, SONG M B, 2023. Life in biophotovoltaics systems[J]. Frontiers in Plant Science, 14: 1151131.
DOI
URL
|
| [8] |
HALMSCHLAG B, PUTRI S P, FUKUSAKI E, et al., 2020. Poly-γ-glutamic acid production by Bacillus subtilis 168 using glucose as the sole carbon source: A metabolomic analysis[J]. Journal of Bioscience and Bioengineering, 130(3): 272-282.
DOI
URL
|
| [9] |
HEATH G A, SILVERMAN T J, KEMPE M, et al., 2020. Research and development priorities for silicon photovoltaic module recycling to support a circular economy[J]. Nature Energy, 5(7): 502-510.
DOI
|
| [10] |
JIAO N, HERNDL G J, HANSELL D A, et al., 2010. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 8(8): 593-599.
DOI
PMID
|
| [11] |
LIU L, CHOI S, 2017. Self-sustaining, solar-driven bioelectricity generation in micro-sized microbial fuel cell using co-culture of heterotrophic and photosynthetic bacteria[J]. Journal of Power Sources, 348: 138-144.
DOI
URL
|
| [12] |
MUKHERJEE T, MOHAN S V, 2021. Metabolic flux of Bacillus subtilis under poised potential in electrofermentation system: Gene expression vs product formation[J]. Bioresource Technology, 342: 125854.
DOI
URL
|
| [13] |
NG F L, PHANG S M, LAN B L, et al., 2020. Optimised spectral effects of programmable LED arrays (PLA)s on bioelectricity generation from algal-biophotovoltaic devices[J]. Scientific Reports, 10(1): 16105.
|
| [14] |
SEYMOUR J R, AMIN S A, RAINA J B, et al., 2017. Zooming in on the phycosphere: The ecological interface for phytoplankton-bacteria relationships[J]. Nature Microbiology, 2(7): 17065.
|
| [15] |
SHENE C, ASENJO J A, CHISTI Y, 2018. Metabolic modelling and simulation of the light and dark metabolism of Chlamydomonas reinhardtii[J]. Plant Journal, 96(5): 1076-1088.
DOI
URL
|
| [16] |
SUN H T, XIE X, DING J, 2024. Electrogenic performance and carbon sequestration potential of biophotovoltaics[J]. Science of Nature, 111(5): 50.
|
| [17] |
TUFANO I, BUOMMINO E, IESCE M R, et al., 2020. Synthesis of novel lignan-like compounds and their antimicrobial activity[J]. Bioorganic & Medicinal Chemistry Letters, 30(17): 124713.
|
| [18] |
YAN Z T, LIU Z H, JIA Z M, et al., 2023. Metabolites of extracellular organic matter from Microcystis and Dolichospermum drive distinct modes of carbon, nitrogen, and phosphorus recycling[J]. Science of the Total Environment, 865: 161124.
DOI
URL
|
| [19] |
YANG L, CHEN J, QIN S, et al., 2018. Growth and lipid accumulation by different nutrients in the microalga Chlamydomonas reinhardtii[J]. Biotechnology for Biofuels, 11(1): 40-52.
DOI
|
| [20] |
YAVARINASAB A, HE J R Y, MOOKHERJEE A, et al., 2025. Electrogenic dynamics of biofilm formation: Correlation between genetic expression and electrochemical activity in Bacillus subtilis[J]. Biosensors & Bioelectronics, 276: 117218.
DOI
URL
|
| [21] |
ZHANG S, ZHANG C Y, JIA Y L, et al., 2019. Sandwich-type electrochemical immunosensor based on Au@Pt DNRs/NH2-MoSe2 NSs nanocomposite as signal amplifiers for the sensitive detection of alpha-fetoprotein[J]. Bioelectrochemistry, 128: 140-147.
DOI
URL
|
| [22] |
ZHOU Y L, XU Z N, WANG M, et al., 2014. DNA methyltransferase activity assay based on visible light-activated photoelectrochemical biosensor[J]. Biosensors and Bioelectronics, 53: 263-267.
DOI
URL
|
| [23] |
ZHU H W, MENG H K, ZHANG W, et al., 2019. Development of a longevous two-species biophotovoltaics with constrained electron flow[J]. Nature Communications, 10: 4282.
DOI
PMID
|
| [24] |
ZHU H W, WANG H W, ZHANG Y P, et al., 2023. Biophotovoltaics: Recent advances and perspectives[J]. Biotechnology Advances, 64: 108101.
DOI
URL
|
| [25] |
蔡阮鸿, 焦念志, 2024. 微型生物碳泵对海洋惰性溶解有机碳化学性质的影响[J]. 中国科学: 地球科学, 54(7): 2443-2444.
|
|
CAI R H, JIAO N Z, 2024. The influence of microbially produced carbon pumps on the chemical properties of inert dissolved organic carbon in the ocean[J]. Chinese Science: Earth Sciences, 54(7): 2443-2444.
|
| [26] |
顾毓蓉, 程晨, 赵雁雁, 等, 2022. 微囊藻毒素异构体产生的调控因子及其在自然水体中分布的研究进展[J]. 生态毒理学报, 17(4): 17-32.
|
|
GU Y R, CHENG C, ZHAO Y Y, et al., 2022. Advances in the study of regulatory factors for the production of microcystis toxins isomers and their distribution in natural water bodies[J]. Journal of Ecological Toxicology, 17(4): 17-32.
|
| [27] |
郭晓昀, 于昌平, 郑天凌, 2015. 微生物太阳能燃料电池的研究进展[J]. 微生物学报, 55(8): 961-970.
|
|
GUO X Y, YU C P, ZHENG T L, 2015. Research progress of microbial solar fuel cells[J]. Acta Microbiologica Sinica, 55(8): 961-970.
|
| [28] |
杨杰, 王自山, 柴金龙, 等, 2021. 枯草芽孢杆菌fmb60菌株非核糖体肽类化合物对铜绿微囊藻生长的抑制作用[J]. 生物工程学报, 37(2): 625-634.
|
|
YANG J, WANG Z C, CHAI J L, et al., 2021. The inhibitory effect of non-ribosomal peptide compounds from Bacillus subtilis fmb60 on the growth of Microcystis aeruginosa[J]. Journal of Biotechnology, 37(2): 625-634.
|
| [29] |
姚程, 王谦, 姜霞, 等, 2023. 湖泊生态系统碳汇特征及其潜在碳中和价值研究[J]. 生态学报, 43(3): 893-909.
|
|
YAO C, WANG Q, JIANG X, et al., 2023. Characteristics of carbon sinks in lake ecosystems and their potential carbon neutrality value[J]. Acta Ecologica Sinica, 43(3): 893-909.
|
| [30] |
张睿, 王广军, 李志斐, 等, 2015. 枯草芽孢杆菌对铜绿微囊藻抑制效果的研究[J]. 中国环境科学, 35(6): 1814-1821.
|
|
ZHANG R, WANG G J, LI Z F, et al., 2015. Study on the inhibitory effect of Bacillus subtilis on Microcystis aeruginosa[J]. Chinese Journal of Environmental Sciences, 35(6): 1814-1821.
|
| [31] |
张玉晴, 刘佳音, 蔡元锋, 等, 2025. 蓝藻-细菌互作及其对碳、氮循环的影响研究进展[J]. 湖泊科学, 37(2): 339-353.
|
|
ZHANG Y Q, LIU J Y, CAI Y F, et al., 2025. Research progress on the interaction between cyanobacteria and bacteria and its impact on carbon and nitrogen cycling[J]. Lake Science, 37(2): 339-353.
|