Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (6): 831-844.DOI: 10.16258/j.cnki.1674-5906.2025.06.001
• Research Article [Ecology] • Next Articles
YUAN Yanfeng1,2,3(), HU Yonghong2,3,*(
), WANG Hesong1,*(
), LU Xiankai4, HOU Meiting5, JIA Gensuo6
Received:
2024-10-05
Online:
2025-06-18
Published:
2025-06-11
袁艳峰1,2,3(), 胡永红2,3,*(
), 王鹤松1,*(
), 鲁显楷4, 侯美亭5, 贾根锁6
通讯作者:
* 胡永红, E-mail: 作者简介:
袁艳峰(2000年生),女,硕士研究生,研究方向为全球变化生态学。E-mail: yyf10252023@163.com
基金资助:
CLC Number:
YUAN Yanfeng, HU Yonghong, WANG Hesong, LU Xiankai, HOU Meiting, JIA Gensuo. Impact of Heat Waves on Vegetation Productivity in Northern Europe[J]. Ecology and Environmental Sciences, 2025, 34(6): 831-844.
袁艳峰, 胡永红, 王鹤松, 鲁显楷, 侯美亭, 贾根锁. 高温热浪对北欧极地植被生产力的影响[J]. 生态环境学报, 2025, 34(6): 831-844.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.06.001
Figure 5 Spatial distribution of HWF, HWMI, the magnitude of the GPP change and analysis of the effect of heat wave intensity on GPP change in Nordic polar
土地覆盖类型 | GPP增加站点 个数 | GPP下降站点 个数 | GPP平均变化 幅度/% |
---|---|---|---|
农田 | 3 | 16 | −8.9 |
草地 | 0 | 1 | −4.0 |
阔叶林 | 2 | 6 | −2.4 |
针叶林 | 4 | 13 | −4.8 |
混交林 | 0 | 3 | −10.9 |
苔原 | 1 | 2 | −6.2 |
湿地 | 2 | 1 | 0.2 |
建设用地 | 0 | 19 | −8.4 |
裸地 | 0 | 1 | −4.5 |
冰雪覆盖 | 3 | 0 | 4.1 |
Table 1 Statistics on the average change in GPP at the corresponding sites for different land cover types
土地覆盖类型 | GPP增加站点 个数 | GPP下降站点 个数 | GPP平均变化 幅度/% |
---|---|---|---|
农田 | 3 | 16 | −8.9 |
草地 | 0 | 1 | −4.0 |
阔叶林 | 2 | 6 | −2.4 |
针叶林 | 4 | 13 | −4.8 |
混交林 | 0 | 3 | −10.9 |
苔原 | 1 | 2 | −6.2 |
湿地 | 2 | 1 | 0.2 |
建设用地 | 0 | 19 | −8.4 |
裸地 | 0 | 1 | −4.5 |
冰雪覆盖 | 3 | 0 | 4.1 |
季节 | 热浪持续 日数/d | GPP恢复周期/d | ||||||
---|---|---|---|---|---|---|---|---|
≤16 | 17-24 | 25-32 | 33-40 | 41-48 | 49-56 | >56 | ||
春季 | ≤5 | 177 | 90 | 44 | 17 | 5 | 2 | 9 |
5-10 | 43 | 26 | 13 | 2 | 4 | 2 | 5 | |
>10 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | |
夏季 | ≤5 | 119 | 70 | 65 | 8 | 11 | 2 | 131 7 |
5-10 | 27 | 7 | 13 | 5 | 5 | 4 | 524 | |
>10 | 0 | 0 | 0 | 0 | 1 | 0 | 55 | |
秋季 | ≤5 | 0 | 0 | 7 | 0 | 0 | 0 | 576 |
5-10 | 0 | 0 | 1 | 0 | 0 | 0 | 89 | |
>10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Table 2 Differences in GPP recovery cycles at different levels of heatwave impacts
季节 | 热浪持续 日数/d | GPP恢复周期/d | ||||||
---|---|---|---|---|---|---|---|---|
≤16 | 17-24 | 25-32 | 33-40 | 41-48 | 49-56 | >56 | ||
春季 | ≤5 | 177 | 90 | 44 | 17 | 5 | 2 | 9 |
5-10 | 43 | 26 | 13 | 2 | 4 | 2 | 5 | |
>10 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | |
夏季 | ≤5 | 119 | 70 | 65 | 8 | 11 | 2 | 131 7 |
5-10 | 27 | 7 | 13 | 5 | 5 | 4 | 524 | |
>10 | 0 | 0 | 0 | 0 | 1 | 0 | 55 | |
秋季 | ≤5 | 0 | 0 | 7 | 0 | 0 | 0 | 576 |
5-10 | 0 | 0 | 1 | 0 | 0 | 0 | 89 | |
>10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[1] | ALBERGEL C, DUTRA E, BONAN B, et al., 2019. Monitoring and forecasting the impact of the 2018 summer heatwave on vegetation[J]. Remote Sensing, 11(5): 520. |
[2] | ARNONE III J A, VERBURG P S J, JOHNSON D W, et al., 2008. Prolonged suppression of ecosystem carbon dioxide uptake after an anomalously warm year[J]. Nature, 455(7211): 383-386. |
[3] |
BARRIOPEDRO D, FISCHER E M, LUTERBACHER J, et al., 2011. The hot summer of 2010: Redrawing the temperature record map of Europe[J]. Science, 332(6026): 220-224.
DOI PMID |
[4] | BASTOS A, GOUVEIA C M, TRIGO R M, et al., 2013. Comparing the impacts of 2003 and 2010 heatwaves in NPP over Europe[J]. Biogeosciences Discussions, 10(10): 15879-15911. |
[5] |
CHAVES M M, FLEXAS J, PINHEIRO C, 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell[J]. Annals of Botany, 103(4): 551-560.
DOI PMID |
[6] |
CHEN H P, SUN J Q, LIN W Q, et al., 2020. Comparison of CMIP6 and CMIP5 models in simulating climate extremes[J]. Science Bulletin, 65(17): 1415-1418.
DOI PMID |
[7] | CIAIS P, REICHSTEIN M, VIOVY N, et al., 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003[J]. Nature, 437(7058): 529-533. |
[8] | COUMOU D, ROBINSON A, RAHMSTORF S, 2013. Global increase in record-breaking monthly-mean temperatures[J]. Climatic Change, 118(3): 771-782. |
[9] | DE BOECK H J, DREESEN F E, JANSSENS I A, et al., 2011. Whole‐system responses of experimental plant communities to climate extremes imposed in different seasons[J]. New Phytologist, 189(3): 806-817. |
[10] | DING Q H, WALLACE J M, BATTISTI D S, et al., 2014. Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland[J]. Nature, 509(7499): 209-212. |
[11] | DOUGHTY C E, KEANY J M, WIEBE B C, et al., 2023. Tropical forests are approaching critical temperature thresholds[J]. Nature, 621(7977): 105-111. |
[12] |
ELMENDORF S C, HENRY G H, HOLLISTER R D, et al., 2012. Global assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and time[J]. Ecology Letters, 15(2): 164-175.
DOI PMID |
[13] | FENNER D, HOLTMANN A, KRUG A, et al., 2019. Heat waves in Berlin and Potsdam, Germany-Long‐term trends and comparison of heat wave definitions from 1893 to 2017[J]. International Journal of Climatology, 39(4): 2422-2437. |
[14] | FORZIERI G, DAKOS V, MCDOWELL N G, et al., 2022. Emerging signals of declining forest resilience under climate change[J]. Nature, 608(7923): 534-539. |
[15] | GARCIA-HERRERA R, DÍAZ J, TRIGO R M, et al., 2010. A review of the European summer heat wave of 2003[J]. Critical Reviews in Environmental Science and Technology, 40(4): 267-306. |
[16] | GARROWAY C J, DE GREEF E, LEFORT K J, et al., 2024. Climate change introduces threatened killer whale populations and conservation challenges to the Arctic[J]. Global Change Biology, 30(6): e17352. |
[17] | GEHRIG R, 2006. The influence of the hot and dry summer 2003 on the pollen season in Switzerland[J]. Aerobiologia, 22(1): 27-34. |
[18] | GERSHUNOV A, GUIRGUIS K, 2012. California heat waves in the present and future[J]. Geophysical Research, Letters, 39(18): L18710. |
[19] | HABEEB D, VARGO J, STONE B, 2015. Rising heat wave trends in large US cities[J]. Natural Hazards, 76: 1651-1665. |
[20] |
HEUTEL G, MILLER N H, MOLITOR D, 2021. Adaptation and the mortality effects of temperature across US climate regions[J]. The Review of Economics and Statistics, 103(4): 740-753.
DOI PMID |
[21] | KIM H Y, HORIE T, NAKAGAWA H, et al., 1996. Effects of elevated CO2 concentration and high temperature on growth and yield of rice: II. The effect on yield and its components of Akihikari rice[J]. Japanese Journal of Crop Science, 65(4): 644-651. |
[22] | LIAN X, PIAO S L, LI L Z X, et al., 2020. Summer soil drying exacerbated by earlier spring greening of northern vegetation[J]. Science Advances, 6(1): eaax0255. |
[23] | MARX W, HAUNSCHILD R, BORNMANN L, 2021. Heat waves: A hot topic in climate change research[J]. Theoretical and Applied Climatology, 146(1-2): 781-800. |
[24] | MAZDIYASNI O, AGHAKOUCHAK A, DAVIS S J, et al., 2017. Increasing probability of mortality during Indian heat waves[J]. Science Advances, 3(6): e1700066. |
[25] |
MEEHL G A, TEBALDI C, 2004. More intense, more frequent, and longer lasting heat waves in the 21st century[J]. Science, 305(5686): 994-997.
DOI PMID |
[26] | MYERS-SMITH I H, FORBES B C, WILMKING M, et al., 2011. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities[J]. Environmental Research Letters, 6(4): 045509. |
[27] | PERKINS S E, ALEXANDER L V, 2013. On the measurement of heat waves[J]. Journal of Climate, 26(13): 4500-4517. |
[28] | PIAO S L, FRIEDLINGSTEIN P, CIAIS P, et al., 2007. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends[J]. Proceedings of the National Academy of Sciences, 104(39): 15242-15247. |
[29] | PITICAR A, CROITORU A E, CIUPERTEA F A, et al., 2018. Recent changes in heat waves and cold waves detected based on excess heat factor and excess cold factor in Romania[J]. International Journal of Climatology, 38(4): 1777-1793. |
[30] | REBETEZ M, DUPONT O, GIROUD M, 2009. An analysis of the July 2006 heatwave extent in Europe compared to the record year of 2003[J]. Theoretical and Applied Climatology, 95: 1-7. |
[31] | REICHSTEIN M, BAHN M, CIAIS P, et al., 2013. Climate extremes and the carbon cycle[J]. Nature, 500(7462): 287-295. |
[32] | PEARSON R G, PHILLIPS S J, LORANTY M M, et al., 2013. Shifts in Arctic vegetation and associated feedbacks under climate change[J]. Nature Climate Change, 3(7): 673-677. |
[33] | RIGOR I G, COLONY R L, MARTIN S, 2000. Variations in surface air temperature observations in the Arctic, 1979-97[J]. Journal of Climate, 13(5): 896-914. |
[34] | RUSSO S, DOSIO A, GRAVERSEN R G, et al., 2014. Magnitude of extreme heat waves in present climate and their projection in a warming world[J]. Journal of Geophysical Research: Atmospheres, 119(22): 12500-12512. |
[35] | RUSSO S, SILLMANN J, FISCHER E M, 2015. Top ten European heatwaves since 1950 and their occurrence in the coming decades[J]. Environmental Research Letters, 10(12): 124003. |
[36] | SALVUCCI M E, CRAFTS-BRANDNER S J, 2004. Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis[J]. Physiologia Plantarum, 120(2): 179-186. |
[37] | SCHWALM C R, WILLIAMS C A, SCHAEFER K, et al., 2012. Reduction in carbon uptake during turn of the century drought in western north America[J]. Nature Geoscience, 5(8): 551-556. |
[38] | SHI Z T, JIA G S, ZHOU Y Y, et al., 2021. Amplified intensity and duration of heatwaves by concurrent droughts in China[J]. Atmospheric Research, 261(24): 105743. |
[39] | STRANDBERG G, ANDERSSON B, BERLIN A, 2024. Plant pathogen infection risk and climate change in the Nordic and Baltic countries[J]. Environmental Research Communications, 6(3): 031008. |
[40] | SWANN A L, FUNG I Y, LEVIS S, et al., 2010. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect[J]. Proceedings of the National Academy of Sciences, 107(4): 1295-1300. |
[41] | TESKEY R, WERTIN T, BAUWERAERTS I, et al., 2015. Responses of tree species to heat waves and extreme heat events[J]. Plant, Cell & Environment, 38(9): 1699-1712. |
[42] | TRENBERTH K E, FASULLO J T, 2012. Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010[J]. Journal of Geophysical Research: Atmospheres, 117(D17): D17103. |
[43] | VON BUTTLAR J, ZSCHEISCHLER J, RAMMIG A, et al., 2018. Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: A systematic assessment across ecosystems and climate zones[J]. Biogeosciences, 15(5): 1293-1318. |
[44] | WANG X R, QIU B, LI W K, et al., 2019. Impacts of drought and heatwave on the terrestrial ecosystem in China as revealed by satellite solar-induced chlorophyll fluorescence[J]. Science of The Total Environment, 693: 133627. |
[45] | WANG Y K, SONG J, 2023b. Field-measured hydraulic traits and remotely sensed NDVI of four subtropical tree species showed transient declines during the drought-heatwave event[J]. Forests, 14(7): 1420. |
[46] | WANG H J, TANG K, 2023a. Extreme climate, innovative ability and energy efficiency[J]. Energy Economics, 120: 106586. |
[47] | WEI Y C, YU M, WEI J F, et al., 2023. Impacts of Extreme Climates on Vegetation at Middle-to-High Latitudes in Asia[J]. Remote Sensing, 15(5): 1251. |
[48] | YUAN W P, CAI W W, CHEN Y, et al., 2016. Severe summer heatwave and drought strongly reduced carbon uptake in southern China[J]. Scientific Reports, 6(1): 18813. |
[49] | ZACHARIAS S, KOPPE C, MÜCKE H G, 2014. Climate change effects on heat waves and future heat wave-associated IHD mortality in Germany[J]. Climate, 3(1): 100-117. |
[50] | ZHANG Y C, PIAO S L, SUN Y, et al., 2022. Future reversal of warming- enhanced vegetation productivity in the northern Hemisphere[J]. Nature Climate Change, 12(6): 581-586. |
[51] | 方精云, 柯金虎, 唐志尧, 等, 2001. 生物生产力的 “4P” 概念、估算及其相互关系[J]. 植物生态学报, 25(4): 414-419. |
FANG J Y, KE Z H, TANG Z Y, et al., 2001. Implications and estimations of four terrestrial productivity parameters[J]. Acta Phytoecological Sinica, 25(4): 414-419. | |
[52] | 耿庆玲, 陈晓青, 赫晓慧, 等, 2022. 中国不同植被类型归一化植被指数对气候变化和人类活动的响应[J]. 生态学报, 42(9): 3557-3568. |
GENG Q L, CHEN X Q, HE X H, et al., 2022. Vegetation dynamics and its response to climate change and human activities based on different vegetation types in China[J]. Acta Ecologica Sinica, 42(9): 3557-3568. | |
[53] |
罗犀, 张玉兰, 康世昌, 等, 2023. AMAP评估报告解读: 北极气候变化及其影响的新认识[J]. 冰川冻土, 45(6): 1757-1766.
DOI |
LUO X, ZHANG Y L, KANG S C, et al., 2023. Interpretation of AMAP assessment reports: Update of arctic climate change and impacts[J]. Journal of Glaciology and Geocryology, 45(6): 1757-1766.
DOI |
|
[54] | 孙迈, 李鹏, 任培鑫, 2023. 青藏高原植被物候对不同强度极端温度和降水的差异化响应[J]. 中国科学: 地球科学, 53(10): 2231-2242. |
SUN M, LI P, REN P X, et al., 2023. Divergent response of vegetation phenology to extreme temperatures and precipitation of different intensities on the Tibetan Plateau[J]. Science China Earth Sciences, 53(10): 2231-2242. | |
[55] | 吴锦成, 朱烨, 刘懿, 等, 2022. 中国热浪时空变化特征分析[J]. 水文, 42(3): 72-77. |
WU J C, ZHU Y, LIU Y, et al., 2022. Spatial-temporal characteristics of heat waves in China[J]. Journal of China Hydrology, 42(3): 72-77. | |
[56] |
武丰民, 李文铠, 李伟, 2019. 北极放大效应原因的研究进展[J]. 地球科学进展, 34(3): 232-242.
DOI |
WU F M, LI W K, LI W, 2019. Causes of Arctic amplification: A review[J]. Advances in Earth Science, 34(3): 232-242. | |
[57] | 徐勇, 黄雯婷, 窦世卿, 等, 2022. 2000-2020年西南地区植被NDVI对气候变化和人类活动响应特征[J]. 环境科学, 43(6): 3230-3240. |
XU Y, HUANG W T, DOU S Q, et al., 2022. Responding mechanism of vegetation cover to climate change and human activities in Southwest China from 2000 to 2020[J]. Environmental Science, 43(6): 3230-3240. | |
[58] | 周波涛, 钱进, 2021. IPCC AR6报告解读: 极端天气气候事件变化[J]. 气候变化研究进展, 17(6): 713-718. |
ZHOU B T, QIAN J, 2021. Changes of weather and climate extremes in the IPCC AR6[J]. Climate Change Research, 17(6): 713-718. |
[1] | LI Xinmei, WU Zuohang, WANG Zhenshan, WENG Shengheng, SUN Chaofeng, GUAN Hui, WANG Hong. Spatio-temporal Dynamics of Vegetation Productivity and Drought Impacts in Fujian Province Using MODIS Data [J]. Ecology and Environmental Sciences, 2024, 33(6): 841-852. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn