Ecology and Environment ›› 2025, Vol. 34 ›› Issue (3): 484-498.DOI: 10.16258/j.cnki.1674-5906.2025.03.015
• Review • Previous Articles
WANG Dongchuan1,2(), LIU Yunqi1, ZHAO Shuang1,*(
), YU Changjin1, ZENG Kongpeng1, ZHANG Wanheng1
Received:
2024-11-19
Online:
2025-03-18
Published:
2025-03-24
Contact:
ZHAO Shuang
汪东川1,2(), 刘云绮1, 赵爽1,*(
), 俞长锦1, 曾孔鹏1, 张万恒1
通讯作者:
赵爽
作者简介:
汪东川(1972年生),男,教授,博士,研究方向为环境遥感监测、景观遥感动态监测、城市环境遥感感知、3S技术集成应用研究。E-mail: mrwangdc@126.com
基金资助:
CLC Number:
WANG Dongchuan, LIU Yunqi, ZHAO Shuang, YU Changjin, ZENG Kongpeng, ZHANG Wanheng. Research Progress on Local Climate Impact and Cumulative Ecological Effects of Cascade Hydropower Development[J]. Ecology and Environment, 2025, 34(3): 484-498.
汪东川, 刘云绮, 赵爽, 俞长锦, 曾孔鹏, 张万恒. 梯级水电开发的局地气候影响及累积生态效应研究进展[J]. 生态环境学报, 2025, 34(3): 484-498.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.03.015
[1] | ALBERTO S, DEAN J, ROBERTA B, 2022. Small hydropower—Small ecological footprint? A multi-annual environmental impact analysis using aquatic macroinvertebrates as bioindicators. Part 2: Effects on functional diversity[J]. Frontiers in Environmental Science, 10: 904547. |
[2] | ASA W, BIRGITTA M R, ERIK D, et al., 2022. Environmental flow scenarios for a regulated river system: Projecting catchment‐Wide ecosystem benefits and consequences for hydroelectric production[J]. Water Resources Research, 58(1): 1-22. |
[3] | BENCHIMOL M, PERES C A, 2015. Predicting local extinctions of Amazonian vertebrates in forest islands created by a mega dam[J]. Biological Conservation, 187: 61-72. |
[4] | BOULTON A J, 2010. An overview of river health assessment: philosophies, practice, problems and prognosis[J]. Freshwater Biology, 41(2): 469-479. |
[5] |
CASTELLO L, MACEDO M N, 2016. Large-scale degradation of Amazonian freshwater ecosystems[J]. Global Change Biology, 22(3): 990-1007.
DOI PMID |
[6] | CUI H, JIANG S H, REN L L, et al., 2022. Dynamics and potential synchronization of regional precipitation concentration and drought-flood abrupt alternation under the influence of reservoir climate[J]. Journal of Hydrology: Regional Studies, 42: 101147. |
[7] |
BRIDGET D R, HARRISON J A, LI S Y, et al., 2016. Greenhouse gas emissions from reservoir water surfaces: A new global synthesis[J]. Bioscience, 66(11): 949-964.
DOI PMID |
[8] | DEGU A M, HOSSAIN F, NIYOGI D, et al., 2011. The influence of large dams on surrounding climate and precipitation patterns[J]. Geophysical Research Letters, 38(4): L4401-L4405. |
[9] | DU H L, YANG L, WANG W Z, et al., 2022. Emergy theory to quantify the sustainability of large cascade hydropower projects in the upper Yangtze[J]. Ecological Modelling, 468: 109954. |
[10] | FRANCK C, JEAN G, SEYDINA D, et al., 2021. Mitigation of ecological impacts on fish of large reservoir sediment management through controlled flushing - The case of the Verbois dam (Rhône River, Switzerland)[J]. Science of the Total Environment, 756: 144053. |
[11] | GRILL G, LEHNER B, THIEME M, et al., 2019. Mapping the world's free-flowing rivers[J]. Nature, 569(7755): 215-221. |
[12] | HOPPENREIJS J H T, ECKSTEIN R L, LIND L, 2022. Pressures on boreal riparian vegetation: A literature review[J]. Frontiers in Ecology and Evolution, 9: 806130. |
[13] | IAKUNIN M, SALGADO R, POTES M, 2018. Breeze effects at a large artificial lake: Summer case study[J]. Hydrology and Earth System Sciences, 22(10): 5191-5210. |
[14] | KOSTER R D, CHANG Y, WANG H, et al., 2016. Impacts of local soil moisture anomalies on the atmospheric circulation and on remote surface meteorological fields during boreal summer: A comprehensive analysis over north America[J]. Journal of Climate, 29(20): 7345-7364. |
[15] | KUANG W H, Du G M, Lu D S, et al., 2020. Global observation of urban expansion and land-cover dynamics using satellite big-data[J]. Science Bulletin, 66(4): 297-300. |
[16] | KUDO R, MASUMOTO T, HORIKAWA N, 2015. Modeling of paddy water management with large reservoirs in Northeast Thailand and its application to climate change assessment[J]. Japan Agricultural Research Quarterly: JARQ, 49(4): 363-376. |
[17] | LI J X, ZHANG S L, OBULKASIM O, et al., 2023. Impact of reservoirs on local precipitation-temperature coupling relationships[J]. Geophysical Research Letters, 50(14): 1-10. |
[18] | LU M W, ZHAO Q H, DING S Y, et al., 2022. Hydro-geomorphological characteristics in response to the water-sediment regulation scheme of the Xiaolangdi Dam in the lower Yellow River[J]. Journal of Cleaner Production, 335: 130324. |
[19] | MAKSIM I M. A E F, PAULO C, et al., 2021. Impact of a large artificial lake on regional climate: A typical meteorological year Meso-NH simulation results[J]. International Journal of Climatology, 42(2): 1231-1252. |
[20] | MAO X F, WEI X Y, ENGEL B, et al., 2020. Biological response to 5 years of operations of cascade rubber dams in a plateau urban river, China[J]. River Research and Applications, 37(8): 1201-1211. |
[21] | MIRANDA L E, HABRAT M D, MIYAZONO S, 2008. Longitudinal gradients along a reservoir cascade[J]. Transactions of the American Fisheries Society, 137(6): 1851-1865. |
[22] | MWAURA F, MAVUTI K M, WAMICHA W N, 2002. Biodiversity characteristics of small high-altitude tropical man-made reservoirs in the Eastern Rift Valley, Kenya[J]. Lakes & Reservoirs: Research & Management, 7(1): 1-12. |
[23] | OMANI N, SRINIVASAN R, KARTHIKEYAN R, et al., 2016. Impacts of climate change on the glacier melt runoff from five river basins[J]. Transactions of the ASABE, 59(4): 829-848. |
[24] | PALMEIRIM F A, PERES A C, ROSAS C F, 2014. Giant otter population responses to habitat expansion and degradation induced by a mega hydroelectric dam[J]. Biological Conservation, 174(10): 30-38. |
[25] |
POFF N L, SCHMIDT J C, 2016. How dams can go with the flow[J]. Science, 353(6304): 1099-1100.
DOI PMID |
[26] | SERAFIM-JUNIOR M, LANSAC-TOHA F A, LOPES R M, et al., 2016. Continuity effects on rotifers and microcrustaceans caused by the construction of a downstream reservoir in a cascade series (Iguacu River, Brazil)[J]. Brazilian Journal of Biology, 76(2): 279-291. |
[27] | SHI W Q, CHEN Q W, YI Q T, et al., 2017. Carbon emission from cascade reservoirs: Spatial heterogeneity and mechanisms[J]. Environmental Science & Technology, 51(21): 12175-12181. |
[28] | SUN L, CAI Y P, YANG W, et al., 2019. Climatic variations within the dry valleys in southwestern China and the influences of artificial reservoirs[J]. Climatic Change, 155(1): 111-125. |
[29] | SUN L, SUN R H, CHEN L D, et al., 2022. Sensitive indicators of soil nutrients from reservoir effects in the hot-dry valleys of China[J]. Catena, 216(Part B): 106421. |
[30] | SUN Q H, MIAO C Y, DUAN Q Y, 2017. Changes in the spatial heterogeneity and annual distribution of observed precipitation across China[J]. Journal of Climate, 30(23): 9399-9416. |
[31] | SUN R H, ZHANG B P, 2016. Topographic effects on spatial pattern of surface air temperature in complex mountain environment[J]. Environmental Earth Sciences, 75(7): 621. |
[32] | TIAN M Q, ZHOU J Z, JIA B J, et al., 2020. Impact of Three Gorges Reservoir water impoundment on vegetation-climate response relationship[J]. Remote Sensing, 12(17): 2860. |
[33] | VARUN, PRAKASH R, BHAT K I, 2010. Life cycle energy and GHG analysis of hydroelectric power development in India[J]. International Journal of Green Energy, 7(4): 361-375. |
[34] | WAN H, XIE Y L, LI B, et al., 2023. An integrated method to identify and evaluate the impact of hydropower development on terrestrial ecosystem[J]. Environmental Impact Assessment Review, 99: 107042. |
[35] | WANG D C, LIU J Y, HUANG Y, et al., 2020. Quantifying the effect of Xiluodu Reservoir on the temperature of the surrounding mountains[J]. GeoHealth, 4(5): e2019GH000242. |
[36] | WANG D C, WANG F C, HUANG Y, et al., 2018. Examining the effects of hydropower station construction on the surface temperature of the Jinsha River dry-hot valley at different seasons[J]. Remote Sensing, 10(4): 600. |
[37] | WANG D C, WANG X, HUANG Y, et al., 2021a. Impact analysis of small hydropower construction on river connectivity on the upper reaches of the great rivers in the Tibetan Plateau[J]. Global Ecology and Conservation, 26: e1496. |
[38] | WANG D C, ZHANG X, HUANG Y, et al., 2021b. Comparative study on temperature response of hydropower development in the dry-hot valley[J]. GeoHealth, 5(7): e2021G-e2438G. |
[39] | WINEMILLER K O, MCINTYRE P B, CASTELLO L, et al., 2016. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong[J]. Science, 351(6269): 128-129. |
[40] | XIONG Y J, YIN J, U K T P, et al., 2020. How the Three Gorges Dam affects the hydrological cycle in the mid-lower Yangtze River: A perspective based on decadal water temperature changes[J]. Environmental Research Letters, 15(1): 14002. |
[41] | YANG D X, MAO X F, WEI X Y, et al., 2020. Water-air interface greenhouse gas emissions (CO2, CH4 and N2O) emissions were amplified by continuous dams in an urban river in Qinghai-Tibet Plateau, China[J]. Water, 12(3): 759. |
[42] | ZHANG H X, CHANG J X, GAO C, et al., 2019. Cascade hydropower plants operation considering comprehensive ecological water demands[J]. Energy Conversion and Management, 180: 119-133. |
[43] | ZHANG J P, YANG Z, WANG D J, et al., 2002. Climate change and causes in the Yuanmou dry-hot valley of Yunnan, China[J]. Journal of Arid Environments, 51(1): 153-162. |
[44] | ZHONG R D, ZHAO T T G, CHEN X H, 2021. Evaluating the tradeoff between hydropower benefit and ecological interest under climate change: How will the water-energy-ecosystem nexus evolve in the upper Mekong basin?[J]. Energy, 237: 121518. |
[45] | ZHOU Y J, LI Z J, YAO S M, et al., 2021. Case study: Influence of Three Gorges Reservoir impoundment on hydrological regime of the acipenser sinensis spawning ground, Yangtze River, China[J]. Frontiers in Ecology and Evolution, 9: 624447. |
[46] | 艾泽, 常蕊, 肖潺, 等, 2023. 模拟分析揭示三峡水库成库以来的气候效应: 局地和近地层, 而不是区域[J]. 湖泊科学, 35(2): 709-724. |
AI Z, CHANG R, XIAO C, et al., 2023. Simulated climate effect of the Three Gorges Reservoir after its completion: Within surface and local scope instead of regional[J]. Journal of Lake Sciences, 35(2): 709-724. | |
[47] | 包广静, 杨子生, 陶文星, 等, 2008. 大型水电工程移民人口影响研究[J]. 水电能源科学, 26(2): 107-108. |
BAO G J, YANG Z S, TAO W X, et al., 2008. Study on large scale hydropower project resettlement impact on population[J]. Water Resources and Power, 26(2): 107-108. | |
[48] | 蔡玉鹏, 杨志, 徐薇, 2017. 三峡水库蓄水后水温变化对四大家鱼自然繁殖的影响[J]. 工程科学与技术, 49(1): 70-77. |
CAI Y P, YANG Z, XU W, 2017. Effect of water temperature variation after impoundment of the Three Gorges Reservoir on natural reproduction of the Four Major Chinese Carps[J]. Advanced Engineering Sciences, 49(1): 70-77. | |
[49] | 陈龙, 谢高地, 鲁春霞, 等, 2011. 水利工程对鱼类生存环境的影响——以近50年白洋淀鱼类变化为例[J]. 资源科学, 33(8): 1475-1480. |
CHEN L, XIE G D, LU C X, et al., 2011. Impacts of hydropower projects on fishes: A case study of Baiyangdian Lake over the recent 50 years[J]. Resources Science, 33(8): 1475-1480. | |
[50] | 陈功, 李晓玲, 黄杰, 等, 2022. 三峡水库秭归段消落带植物群落特征及其与环境因子的关系[J]. 生态学报, 42(2): 688-699. |
CHEN G, LI X L, HUANG J, et al., 2022. Characteristics of plant communities and their relationships with environmental factors in the water level fluctuation zone of the Zigui region of the Three Gorges Reservoir[J]. Acta Ecologica Sinica, 42(2): 688-699. | |
[51] | 陈国建, 方宁, 李剑峰, 等, 2024. 基于TVDI的金沙江下游干旱时空变化及影响因素研究(英文)[J]. 资源与生态学报, 15(1): 44-54. |
CHEN J G, FANG N, LI J F, et al., 2024. Spatiotemporal variation and drivers of drought based on TVDI in the lower reaches of the Jinsha River[J]. Journal of Resources and Ecology, 15(1): 44-54.
DOI |
|
[52] | 陈俊贤, 蒋任飞, 陈艳, 2015. 水库梯级开发的河流生态系统健康评价研究[J]. 水利学报, 46(3): 334-340. |
CHEN J X, JIANG R F, CHEN Y, 2015. Evaluation on the health of river ecosystem under the cascade development of reservoirs[J]. Journal of Hydraulic Engineering, 46(3): 334-340. | |
[53] | 陈赛男, 岳甫均, 侯永梅, 等, 2024. 乌江流域梯级水库群混合期N2O的释放机理及其影响因素[J]. 地球与环境, 52(5): 535-544. |
CHEN S N, YUE P J, HOU Y M, et al., 2024. Mechanisms and influencing factors of N2O emission from the cascade reservoirs of the Wujiang watershed during mixing period stratification period[J]. Earth and Environment, 52(5): 535-544. | |
[54] | 陈鲜艳, 宋连春, 郭占峰, 等, 2013. 长江三峡库区和上游气候变化特点及其影响[J]. 长江流域资源与环境, 22(11): 1466-1471. |
CHEN X Y, SONG L C, GUO Z F, et al., 2013. Climate change over the Three Gorge Reservoir and Upper Yangtze with its possible effect[J]. Resources and Environment in the Yangtze Basin, 22(11): 1466-1471. | |
[55] | 陈越豪, 何光熊, 史亮涛, 等, 2021. 干热河谷典型区元谋县土地利用变化与动态预测[J]. 科学技术与工程, 21(20): 8366-8375. |
CHEN Y H, HE G X, SHI L T, et al., 2021. Land use change and dynamic prediction in Yuanmou County, a typical dry and hot valley area[J]. Science Technology and Engineering, 21(20): 8366-8375. | |
[56] | 程春田, 2021. 碳中和下的水电角色重塑及其关键问题[J]. 电力系统自动化, 45(16): 29-36. |
CHENG C T, 2021. Function remolding of hydropower systems for Carbon Neutral and its key problems[J]. Automation of Electric Power Systems, 45(16): 29-36. | |
[57] | 邓伟琼, 孙荣, 李修明, 等, 2015. 水电开发对河岸植被影响研究进展[J]. 生态科学, 34(6): 201-208. |
DENG W Q, SUN R, LI X M, et al., 2015. Review on impacts of cascade hydropower exploitation on the riparian vegetation[J]. Ecological Science, 34(6): 201-208. | |
[58] | 丁文荣, 吕喜玺, 明庆忠, 2011. 金沙江元谋干热河谷区水热变化的多时间尺度分析[J]. 节水灌溉, 36(1): 25-28. |
DING W R, LÜ X X, MING Q Z, et al., 2011. Multi-time scale analysis of hydrothermal changing in Yuanmou Dry-hot River Valley of Jinsha River[J]. Water Saving Irrigation, 36(1): 25-28. | |
[59] | 范宏翔, 徐力刚, 朱华, 等, 2021. 气候变化和人类活动对鄱阳湖水龄影响的定量区分[J]. 湖泊科学, 33(4): 1175-1187. |
FAN H X, XU L G, ZHU H, et al., 2021. Distinguishing the relative impacts of climate change and anthropogenic activities on variation of water age in the Lake Poyang[J]. Journal of Lake Sciences, 33(4): 1175-1187. | |
[60] | 甘淑, 袁希平, 何大明, 2002. 遥感技术在漫湾库区周边植被覆盖宏观监测中的应用研究[J]. 水土保持学报, 16(3): 60-63. |
GAN S, YUAN X P, HE D M, 2002. Study on application of remote sensing monitoring vegetation cover around the Manwan Hydropower Station[J]. Journal of Soil and Water Conservation, 16(3): 60-63. | |
[61] | 高蕾, 陈海山, 孙善磊, 2014. 基于MODIS卫星资料研究三峡工程对库区地表温度的影响[J]. 气候变化研究进展, 10(3): 226-234. |
GAO L, CHEN H S, SUN S L, 2014. Impacts of three gorges project on land surface temperature based on MODIS Dataset[J]. Climate Change Research, 10(3): 226-234. | |
[62] | 高洁, 岳蕾, 朱方亮, 2023. 从河流水电规划历程看《河流水电规划编制规范》修订[J]. 中国标准化, 30(19): 150-154. |
GAO J, YUE L, ZHU F L, 2023. Revisions of specification on compiling hydropower planning of river based on history of river hydropower planning[J]. China Standardization, 30(19): 150-154. | |
[63] | 桂娟, 高海宁, 李宗省, 等, 2019. 祁连山张掖段水电开发对区域生态环境的影响[J]. 生态学杂志, 38(7): 2159-2166. |
GUI J, GAO H N, LI Z S, et al., 2019. The impacts of hydropower development in Zhangye section of Qilian Mountains on regional eco-environment[J]. Chinese Journal of Ecology, 38(7): 2159-2166. | |
[64] | 贺秋华, 余德清, 余姝辰, 等, 2021. 三峡水库运行前后洞庭湖水资源量变化[J]. 地球科学, 46(1): 293-307. |
HE Q H, YU D Q, YU S C, et al., 2021. Changes of water resources amount in Dongting Lake before and after the operation of the Three Gorges Reservoir[J]. Earth Science, 46(1): 293-307. | |
[65] |
胡月, 卢阳, 金可, 等, 2021. 干热河谷生态治理探讨[J]. 长江科学院院报, 38(10): 69-75.
DOI |
HU Y, LU Y, JIN K, et al., 2021. Discussion on ecological restoration in dry-hot valley[J]. Journal of Changjiang River Scientific Research Institute, 38(10): 69-75. | |
[66] |
胡艳茹, 梁丽娇, 何立平, 等, 2023. 三峡水库蓄水前后库区及周边区域降水变化及其影响因素[J]. 地理研究, 42(7): 1921-1940.
DOI |
HU Y R, LIANG L J, HE L P, et al., 2023. Precipitation change and its influencing factors in the Three Gorges Reservoir area and its surrounding areas before and after impoundment[J]. Geographical Research, 42(7): 1921-1940. | |
[67] | 黄蕾, 2022. 水利水电开发项目的生态环境保护研究与实践[J]. 资源节约与环保, 18(2): 17-20. |
HUANG L, 2022. Research and practice of ecological environment protection in water conservancy and hydropower development projects[J]. Resources Economization & Environmental Protection, 18(2): 17-20. | |
[68] |
贾建辉, 陈建耀, 龙晓君, 等, 2020. 水电开发对河流生态系统服务的效应评估与时空变化特征分析——以武江干流为例[J]. 自然资源学报, 35(9): 2163-2176.
DOI |
JIA J H, CHEN J Y, LONG X J, et al., 2020. Evaluating the cumulative impacts of the hydropower development on the river ecosystem services in terms of spatial and temporal aspects: A case study in the mainstream of the Wujiang River[J]. Journal of Natural Resources, 35(9): 2163-2176. | |
[69] | 蒋丽, 2021. 澜沧江中游梯级水电开发对水库水温的累积影响[D]. 昆明: 云南大学. |
JIANG L, 2021. Cumulative impact of cascadehydropower development in the middlereaches of Lancang River on reservoirwater temperature[D]. Kunming: Yunnan University. | |
[70] | 李艳, 张倩倩, 陈鲜艳, 2017. 大渡河流域水电开发对区域气候的可能影响[J]. 大气科学学报, 40(1): 90-99. |
LI Y, ZHANG Q Q, CHEN X Y, 2017. The impact of the land-use change associated with the development of a hydropower station on regional climate[J]. Transactions of Atmospheric Sciences, 40(1): 90-99. | |
[71] |
李哲, 陈永柏, 李翀, 等, 2018. 河流梯级开发生态环境效应与适应性管理进展[J]. 地球科学进展, 33(7): 675-686.
DOI |
LI Z, CHEN Y B, LI C, et al., 2018. Advances of eco-environmental effects and adaptive management in river cascading development[J]. Advances in Earth Science, 33(7): 675-686.
DOI |
|
[72] |
李晋鹏, 赵爱东, 董世魁, 2019. 澜沧江梯级水电开发对漫湾库区大型底栖动物群落及重金属沉积的影响[J]. 生态环境学报, 28(1): 117-127.
DOI |
LI J P, ZHAO A D, DONG S K, 2019. Effects of cascading hydropower dams exploitation on benthic macroinvertebrate assemblages and heavy metals deposition in Manwan Reservoir, Lancang River[J]. Ecology and Environmental Sciences, 28(1): 117-127. | |
[73] | 李梁婷, 尼玛卓嘎, 旦增罗布, 等, 2024. 西藏旁多水库气候变化特征及其影响分析[J]. 环境生态学, 6(3): 93-98. |
LI L T, NI M Z G, DAN Z L B, et al., 2024. Characteristics of climate change in Pangduo Reservoir in Tibet and its impact analysis[J]. Environmental Ecology, 6(3): 93-98. | |
[74] | 李其轩, 张真, 徐梦娇, 等, 2024. 乌溪江水库富营养化程度及其影响因子时空分布探讨[J]. 水生态学杂志, 45(2): 31-38. |
LI Q X, ZHANG Z, XU M J, et al., 2024. Temporal and spatial distribution of eutrophication and influencing factors in Wuxijiang Reservoir[J]. Journal of Hydroecology, 45(2): 31-38. | |
[75] | 李文鑫, 金君良, 舒章康, 等, 2024. 气候变化对嘉陵江流域水资源和极端水文事件的影响[J]. 水利水运工程学报, 51(2): 20-33. |
LI W X, JIN J L, SHU Z K, et al., 2024. Assessing the impact of climate change on water resources and extreme hydrological events in the Jialing River Basin[J]. Hydro-Science and Engineering, 51(2): 20-33. | |
[76] | 李筱芹, 吴开阳, 倪达富, 等, 2024. 基于环境DNA技术的梯级水坝对长江上游重要支流鱼类多样性的影响研究——以綦江为例[J]. 生态学报, 44(19): 8865-8883. |
LI X Q, WU K Y, NI D F, et al., 2024. Impacts of cascade dams on the diversity of fish species in an important tributary of the upper reaches of Yangtze River based on environmental DNA technology: A case study of Qijiang River[J]. Acta Ecologica Sinica, 44(19): 8865-8883. | |
[77] | 李艳梅, 陈奇伯, 梁茂, 等, 2016. 干热河谷水电建设干扰对表土层土壤养分及微生物的影响[J]. 水土保持学报, 30(1): 147-152. |
LI Y M, CHEN Q B, LIANG M, et al., 2016. Effect of disturbance of hydropower construction on soil nutrients and microorganisms in dry-hot river valley[J]. Journal of Soil and Water Conservation, 30(1): 147-152. | |
[78] | 黎正辉, 2019. 水利水电工程建设对生态环境的影响探析[J]. 资源信息与工程, 34(5): 93-96. |
LI Z H, 2019. Analysis of the impact of water conservancy and hydropower project construction on the ecological environment[J]. Resource Information and Engineering, 34(5): 93-96. | |
[79] | 梁茂, 李艳梅, 2015. 干热河谷地区水电工程建设干扰对土壤微生物数量的影响[J]. 现代农业科技, 22(5): 211-213. |
LIANG M, LI Y M, 2015. Effect of disturbance of hydropower project construction to quantity of soil microorganism in dry-hot valley area[J]. Modern Agricultural Science and Technology, 22(5): 211-213. | |
[80] | 廖顺宝, 杨旭, 陈世强, 2014. 基于时空观测样本的水库库区小气候效应分析——以福建省大型水库为例[J]. 福建师范大学学报(自然科学版), 30(5): 38-43. |
LIAO S B, YANG X, CHEN S Q, 2014. Analysis on microclimate effects of reservoirs based on spatial-temporal observation samples: A case study of large-sized reservoirs in Fujian Province[J]. Journal of Fujian Normal University (Natural Science Edition), 30(5): 38-43. | |
[81] | 廖淑敏, 薛联青, 陈佳澄, 等, 2019. 塔里木河生态输水的累积生态响应[J]. 水资源保护, 35(5): 120-126. |
LIAO S M, XUE L Q, CHEN J C, et al., 2019. Cumulative ecological response of ecological water transmission in Tarim River[J]. Water Resources Protection, 35(5): 120-126. | |
[82] | 刘畅, 刘耕源, 杨青, 2019. 水坝建设对河流生态系统服务价值影响评估[J]. 人民黄河, 41(8): 88-94. |
LIU C, LIU G Y, YANG Q, 2019. New ecosystem services valuation method on dam projects[J]. Yellow River, 41(8): 88-94. | |
[83] | 刘娇, 郎学东, 苏建荣, 等, 2021. 基于InVEST模型的金沙江流域干热河谷区水源涵养功能评估[J]. 生态学报, 41(20): 8099-8111. |
LIU J, LANG X D, SU J R, et al., 2021. Evaluation of water conservation function in the dry-hot valley area of Jinsha River Basin based on InVEST model[J]. Acta Ecologica Sinica, 41(20): 8099-8111. | |
[84] | 刘婧, 夏峰, 杨茜, 等, 2011. 金沙江中游河段水电开发对陆生生态环境的影响分析及对策研究浅谈[J]. 环境科学导刊, 30(2): 80-83. |
LIU J, XIA F, YANG Q, et al., 2011. Brief talk on impacts and countermeasures on terrestrial ecological environment on hydropower development in the middle reach of the Jinshajiang River[J]. Environmental Science Survey, 30(2): 80-83. | |
[85] | 刘世梁, 安南南, 董世魁, 等, 2015. 基于NDVI的水电站开发对植被的影响——以澜沧江梯级水电站开发为例[J]. 山地学报, 33(1): 48-57. |
LIU S L, AN N N, DONG S K, et al., 2015. The effects of hydropower stations construction on vegetation dynamics based on NDVI: A case study of cascade hydropower stations of Lancang River[J]. Mountain Research, 33(1): 48-57. | |
[86] | 刘世梁, 赵清贺, 董世魁, 2016. 水利水电工程建设的生态效应评价研究[M]. 北京: 中国环境出版社:207. |
LIU S L, ZHAO Q H, DONG S K, 2016. Study on ecological effect evaluation of water conservancy and hydropower project construction[M]. Beijing: China Environmental Publishing House:207. | |
[87] | 刘艳伟, 李闯, 符娜, 等, 2015. 元谋干热河谷地区ET0特征及其影响因子分析[J]. 干旱区资源与环境, 29(10): 172-177. |
LIU Y W, LI C, FU N, et al., 2015. Trend of reference crop evapotranspiration and its main meteorological impact factors in Yuanmou dry-hot valleys during the last 57 years[J]. Journal of Arid Land Resources and Environment, 29(10): 172-177. | |
[88] | 刘艳伟, 王淑莹, 屠星磊, 等, 2018. 元谋干热河谷区近60年干湿状况和气温变化特征分析[J]. 排灌机械工程学报, 36(2): 172-178. |
LIU Y W, WANG S Y, TU X L, et al., 2018. Characteristic analysis of dry-wet condition and temperature trend in Yuanmou dry-hot valley (DHV) in recent 60 years[J]. Journal of Drainage and Irrigation Machinery Engineering, 36(2): 172-178. | |
[89] | 卢璐, 王琼, 王国庆, 等, 2016. 金沙江流域近60年气候变化趋势及径流响应关系[J]. 华北水利水电大学学报(自然科学版), 37(5): 16-21. |
LU L, WANG Q, WANG G Q, et al., 2016. Trend of climate change over the recent 60 years and its hydrological responses for Jinsha River Basin[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 37(5): 16-21. | |
[90] |
陆苗, 许有鹏, 高斌, 等, 2021. 平原河网区水利工程调控下水文连通变化[J]. 地理学报, 76(11): 2685-2696.
DOI |
LU M, XU Y P, GAO B, et al., 2021. Variations of hydrological connectivity regulated by sluices in a delta plain[J]. Acta Geographica Sinica, 76(11): 2685-2696.
DOI |
|
[91] | 欧朝蓉, 袁加远, 雷晨雨, 等, 2021. 元谋干热河谷生态交错带森林生态系统服务价值空间分异特征[J]. 应用与环境生物学报, 27(2): 357-365. |
OU C R, YUAN J Y, LEI C Y, et al., 2021. Spatial differentiation characteristics of forest ecosystem service values in the Yuanmou dry-hot valley ecotone[J]. Chinese Journal of Applied and Environmental Biology, 27(2): 357-365. | |
[92] | 朴世龙, 何悦, 王旭辉, 等, 2022. 中国陆地生态系统碳汇估算: 方法、进展、展望[J]. 中国科学: 地球科学, 52(6): 1010-1020. |
PIAO S L, HE Y, WANG X H, et al., 2022. Carbon sink estimation of terrestrial ecosystems in China: Methods, progress and prospects[J]. Scientia Sinica (Terrae), 52(6): 1010-1020. | |
[93] | 秦剑, 赵刚, 陈艳, 等, 2013. 金沙江下游局地大气边界层风场变化特征[J]. 气象, 39(6): 749-758. |
QIN J, ZHAO G, CHEN Y, et al., 2013. Variation features of wind field in atmospheric boundary layer over the lower reaches of Jinsha River[J]. Meteorological Monthly, 39(6): 749-758. | |
[94] | 邱兴春, 夏豪, 2023. 乌江下游水电开发对陆生生态系统影响分析评价[J]. 环境监控与预警, 15(4): 92-96. |
QIU X C, XIA H, 2023. The environmental impact analysis and assessment of hydroelectric development on terrestrial ecosystem in lower reaches of Wujiang River[J]. Environmental Monitoring and Forewarning, 15(4): 92-96. | |
[95] | 阙子亿, 王晓锋, 袁兴中, 等, 2022. 梯级筑坝下小型山区河流水体碳氮磷的时空特征及富营养化风险[J]. 湖泊科学, 34(6): 1949-1967. |
QUE Z Y, WANG X F, YUAN X Z, et al., 2022. Spatial-temporal distribution of carbon, nitrogen and phosphorus concentrations and eutrophication evaluation of mountainous small river in a cascaded damming[J]. Journal of Lake Sciences, 34(6): 1949-1967. | |
[96] | 史雯雨, 李增永, 李娜, 等, 2019. 金沙江流域1957-2016年气温时空变化特征[J]. 水土保持研究, 26(1): 162-167. |
SHI W Y, LI Z Y, LI N, et al., 2019. Temporal and spatial characteristics of distribution of temperature in Chinsha River Basin from 1957 to 2016[J]. Research of Soil and Water Conservation, 26(1): 162-167. | |
[97] | 孙佳歆, 杜崇, 齐鹏, 等, 2023. 珲春河流域极端气候时空演变特征及水库运行的反馈效应[J]. 绿色科技, 25(4): 10-16. |
SUN J X, DU C, QI P, et al., 2023. Spatiotemporal change of extreme climate and feedback effects of reservoir operation in Hunchun River Basin[J]. Journal of Green Science and Technology, 25(4): 10-16. | |
[98] | 孙然好, 何晓银, 孙龙, 等, 2023. 流域水电开发对干热河谷社会-生态系统的影响及意义[J]. 生态学报, 43(14): 5639-5647. |
SUN R H, HE X Y, SUN L, et al., 2023. Impacts of watershed hydropower development on social-ecological systems in hot-dry valleys[J]. Acta Ecologica Sinica, 43(14): 5639-5647. | |
[99] | 王传华, 曾春函, 沈德嵩, 等, 2016. 云南干热河谷水库气候效应对车桑子幼苗生长发育的影响及其作用机制[J]. 生态学报, 36(17): 5343-5352. |
WANG C H, ZENG C H, SHEN D S, et al., 2016. Climatic effects of the artificial reservoir of China’s dry-hot valleys on the growth and physiological traits of Dodonaea viscosa seedlings[J]. Acta Ecologica Sinica, 36(17): 5343-5352. | |
[100] | 汪东川, 俞长锦, 孙苗苗, 等, 2024a. 金沙江干热河谷典型水电开发对局地气候的影响[J]. 水土保持学报, 38(1): 158-166. |
WANG D C, YU C J, SUN M M, et al., 2024a. Impacts of typical hydropower development on local climate in the dry-hot valley of the Jinsha River[J]. Journal of Soil and Water Conservation, 38(1): 158-166. | |
[101] | 汪东川, 李亭蓉, 王康健, 等, 2024b. 金沙江观音岩库区植被覆盖度时空差异影响机制分析[J]. 生态环境学报, 33(7): 997-1007. |
WANG D C, LI T R, WANG K J, et al., 2024b. Analysis of the influence mechanism of spatial and temporal differences in fraction vegetation coverage in the Guanyinyan Reservoir Area of the Jinsha River[J]. Ecology and Environmental Sciences, 33(7): 997-1007. | |
[102] | 王海杰, 2012. 基于RS/GIS的水电梯级开发对汉江上游陆生生态环境影响研究[D]. 西安: 西北大学. |
WANG H J, 2012. An analysis on terrestrial eco-environment impact based on RS and GIS of hydropower cascade development which is on the upper of Hanjiang River[D]. Xi’an: Northwest University. | |
[103] | 王思凡, 徐慧, 任玉峰, 等, 2024. 水库建设对河道水温及生态环境的影响研究进展[J/OL]. 三峡生态环境监测, 9(1): 1-29 [2025-01-20]. https://link.cnki.net/urlid/50.1214.X.20241024.1249.002. |
WANG S F, XU H, REN Y F, et al., 2024. Research progress on the influence of reservoir construction on river water temperature and ecological environment[J/OL]. Ecology and Environmental Monitoring of Three Gorges, 9(1): 1-29 [2025-01-20]. https://link.cnki.net/urlid/50.1214.X.20241024.1249.002. | |
[104] | 王勇, 李鹏, 穆军, 等, 2009. 金沙江干热河谷水电站库区消落带生态修复对策研究[J]. 水土保持研究, 16(5): 141-144. |
WANG Y, LI P, MU J, et al., 2009. Ecological restoration in level-fluctuating zone countermeasures of dry-hot valleys reservoirs in the Jinsha River[J]. Research of Soil and Water Conservation, 16(5): 141-144. | |
[105] | 王志红, 田磊, 李艳春, 等, 2014. 青铜峡水库蓄水前后其上游流域气候变化对比分析[J]. 宁夏工程技术, 13(3): 241-245. |
WANG Z H, TIAN L, LI Y C, et al., 2014. Comparative analysis of climate change in upper basin of Qingtongxia reservoir between impounding before and after[J]. Ningxia Engineering Technology, 13(3): 241-245. | |
[106] | 王兆印, 张晨笛, 2019. 西南山区河流河床结构及消能减灾机制[J]. 水利学报, 50(1): 124-134. |
WANG Z Y, ZHANG C D, 2019. Bedforms, energy dissipation and disaster mitigation mechanism in mountain rivers of Southwest China[J]. Journal of Hydraulic Engineering, 50(1): 124-134. | |
[107] | 温静雅, 李世刚, 彭李, 等, 2024. 梯级水电开发背景下的外来植物入侵状况与防控管理——以澜沧江流域(云南段)为例[J]. 环境影响评价, 46(5): 8-16. |
WEN J Y, LI S G, PENG L, et al., 2024. Management and control of invasive alien plants in cascading hydropower development projects: A case study of the Lancang River Basin (Yunnan Section)[J]. Environmental Impact Assessment, 46(5): 8-16. | |
[108] | 武慧铃, 周建中, 田梦琦, 等, 2021. 三峡水库蓄水前后气候变化分析[J]. 水力发电, 47(5): 30-35. |
WU H L, ZHOU J Z, TIAN M Q, et al., 2021. Analysis of climate change before and after the impoundment of the Three Gorges Reservoir[J]. Water Power, 47(5): 30-35. | |
[109] | 吴世勇, 王红梅, 黄新生, 2005. 二滩水电站对局地环境的影响及效益[J]. 四川水力发电, 24(S1): 85-87. |
WU S Y, WANG H M, HUANG X S, 2005. The influence and benefit of Ertan hydropower station on local environment[J]. Sichuan Hydro Power, 24(S1): 85-87. | |
[110] | 杨昆, 邓熙, 李学灵, 等, 2011. 梯级开发对河流生态系统和景观影响研究进展[J]. 应用生态学报, 22(5): 1359-1367. |
YANG K, DENG X, LI X N, et al., 2011. Impacts of hydroelectric cascade exploitation on river ecosystem and landscape: A review[J]. Chinese Journal of Applied Ecology, 22(5): 1359-1367. | |
[111] | 杨青, 杨广斌, 赵青松, 等, 2020. 基于遥感数据的水库局地气温调节功能分析——以龙滩水库为例[J]. 中低纬山地气象, 44(1): 22-27. |
YANG Q, YANG G B, ZHAO Q S, et al., 2020. Analysis of local temperature regulation function of reservoir based on remote sensing data: Take Longtan reservoir as an example[J]. Journal of Mountain Meteorology, 44(1): 22-27. | |
[112] | 杨红义, 韩瑞, 2024. 基于Vortex模型分析金沙江水电开发对圆口铜鱼种群生存力的影响[J]. 生态学报, 44(9): 3984-3998. |
YANG H Y, HAN R, 2024. Effect of the Jinsha River hydropower development on population viability of Coreius guichenoti based on the Vortex model[J]. Acta Ecologica Sinica, 44(9): 3984-3998. | |
[113] | 杨元合, 石岳, 孙文娟, 等, 2022. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J]. 中国科学: 生命科学, 52(4): 534-574. |
YANG Y H, SHI Y, SUN W J, et al., 2022. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Scientia Sinica (Vitae), 52(4): 534-574. | |
[114] | 杨永江, 张晨笛, 2021. 中国水电发展热点综述[J]. 水电与新能源, 35(9): 1-7. |
YANG Y J, ZHANG C D, 2021. Key aspects of the future hydropower development in China[J]. Hydropower and New Energy, 35(9): 1-7. | |
[115] | 于子铖, 赵进勇, 彭文启, 等, 2023. 小水电河流水文地貌-生态响应关系研究[J]. 水利水电技术(中英文), 54(6): 137-146. |
YU Z C, ZHAO J Y, PENG W Q, et al., 2023. Study on hydrogeomorphic features-ecological response of river with small hydropower plants[J]. Water Resources and Hydropower Engineering, 54(6): 137-146. | |
[116] | 张登成, 樊皓, 王孟, 等, 2022. 金沙江乌东德水电站生态调度目标鱼类筛选研究[J]. 水生态学杂志, 43(5): 73-82. |
ZHANG D C, FAN H, WANG M, et al., 2022. Target fish screening for the ecological operation of Wudongde Hydropower Station on Jinsha River[J]. Journal of Hydroecology, 43(5): 73-82. | |
[117] | 张居嘉, 杨明祥, 王贺佳, 等, 2024. 澜沧江上游积雪演变规律及融雪径流模拟研究[J/OL]. 长江科学院院报, 41(5): 1-8 [2025-01-20]. https://link.cnki.net/urlid/42.1171.TV.20240409.0945.002. |
ZHANG J J, YANG M X, WANG H J, et al., 2024. Evolution trend of snow cover and simulation of snowmelt runoff in upper reaches of Lancang River[J]. Journal of Changjiang River Scientific Research Institute, 41(5): 1-8. [2025-01-20]. https://link.cnki.net/urlid/42.1171.TV.20240409.0945.002. | |
[118] | 张秀, 张璇, 崔磊, 等, 2024. 金沙江中游水电开发区生态系统服务综合功能时空变化与归因[J/OL]. 环境科学, 49(5): 1-21 [2025-01-20]. https://doi.org/10.13227/j.hjkx.202402105. |
ZHANG X, ZHANG X, CUI L, et al., 2024. Comprehensive ecosystem service changes and their drivers in the middle reaches of Jinsha River[J/OL]. Environmental Science, 49(5): 1-21 [2025-01-20]. https://doi.org/10.13227/j.hjkx.202402105. | |
[119] | 张馨月, 马沛明, 高千红, 等, 2019. 三峡大坝上下游水质时空变化特征[J]. 湖泊科学, 31(3): 633-645. |
ZHANG X Y, MA P M, GAO Q H, et al., 2019. Spatial-temporal variations of water quality in upstream and downstream of Three Gorges Dam[J]. Journal of Lake Sciences, 31(3): 633-645. | |
[120] | 张自强, 明庆忠, 张虎才, 等, 2013. 金沙江干热河谷地理环境演化研究进展与问题[J]. 地理科学研究, 2(1): 1-7. |
ZHANG Z Q, MING Q Z, ZHANG H C, et al., 2013. Progress and issues on geographical environment evolution in dry-hot valley of Jinsha River[J]. Geographical Science Research, 2(1): 1-7. | |
[121] | 赵冬林, 朱仕荣, 2024. 2010-2021年金沙江干热河谷植被覆盖度时空变化及其影响因素[J]. 生态学杂志, 43(8): 2373-2381. |
ZHAO D L, ZHU S R, 2024. Spatiotemporal variation of vegetation coverage and its influencing factors in the dry-hot valley of Jinsha River during 2010-2021[J]. Chinese Journal of Ecology, 43(8): 2373-2381. | |
[122] | 郑玲芳, 郝芳华, 杨胜天, 2005. 天生桥一级水库蓄水前后库周土地覆盖变化研究[J]. 水土保持研究, 12(2): 80-82. |
ZHENG L F, HAO F H, YANG S T, 2005. RS-based analysis of land cover change in the region surrounding Tianshengqiao No.1 Hydropower Reservoir before and after its construction[J]. Research of Soil and Water Conservation, 12(2): 80-82. | |
[123] |
郑祚芳, 任国玉, 王耀庭, 等, 2017. 大型人工湖气候效应观测研究——以密云水库为例[J]. 地理科学, 37(12): 1933-1941.
DOI |
ZHENG Z F, REN G Y, WANG Y T, et al., 2017. Observational study on climate effect of large artificial lake: Taking Miyun Reservoir as an example[J]. Scientia Geographica Sinica, 37(12): 1933-1941.
DOI |
|
[124] | 中国气象局国家气候中心, 2011. 三峡水利工程气候效应分析与评估[J]. 中国三峡, 28(9): 28-30. |
National Climate Center of China Meteorological Administration, 2011. Analysis and evaluation of climate effect of Three Gorges Project[J]. China Three Gorges, 28(9): 28-30. | |
[125] | 钟华平, 刘恒, 耿雷华, 2008. 怒江水电梯级开发的生态环境累积效应[J]. 水电能源科学, 26(1): 52-55. |
ZHONG H P, LIU H, GENG L H, 2008. Ecology and environment cumulative effects of cascaded hydropower development in Nujiang River[J]. Water Resources and Power, 26(1): 52-55. | |
[126] | 周家骢, 2011. 以金沙江干流水电开发促进金沙江流域干热河谷陆生生态修复[J]. 西北水电, 30(3): 1-3. |
ZHOU J C, 2011. Promoting the terrestrial ecological restoration in the dry-hot valley by hydropower development in the Jinshajiang Basin[J]. Northwest Hydropower, 30(3): 1-3. | |
[127] | 周扬, 杨珺, 2024. 梯级水电开发对金沙江干流生态环境的累积影响[J]. 人民珠江, 45(12): 1-9. |
ZHOU Y, YANG J, 2024. Cumulative impact of cascade hydropower development on ecological environment of the Jinsha River[J]. Pearl River, 45(12): 1-9. | |
[128] | 朱俊, 张勇, 毕明亮, 等, 2024. 大型水电工程与区域生态因子变化的关联性研究——以向家坝、溪洛渡电站为例[J]. 环境保护科学, 50(2): 85-93. |
ZHU J, ZHANG Y, BI M L, et al., 2024. The relationship between large hydropower projects and regional ecological factors: Taking Xiangjiaba and Xiluodu power stations as examples[J]. Environmental Protection Science, 50(2): 85-93. | |
[129] | 邹昊, 权全, 王雅宜, 等, 2018. 气候变化对龙羊峡水库水温的影响[C]// 中国环境科学学会. 2018中国环境科学学会科学技术年会论文集(第4卷). 北京: 中国环境科学学会: 550-559. |
ZHOU H, QUAN Q, WANG Y Y, et al., 2018. Impact of climate change on water temperature of Longyangxia Reservoir[C]// Chinese Society of Environmental Sciences. Proceedings of Science and Technology Annual Meeting of Chinese Society of Environmental Sciences 2018 (Vol.4). Beijing: Chinese Society of Environmental Sciences: 550-559. | |
[130] |
子桂才, 李庆华, 赵丽芳, 等, 2023. 干热河谷区生态修复研究进展[J]. 广西林业科学, 52(1): 141-145.
DOI |
ZI G C, LI Q H, ZHAO L F, et al., 2023. Study progress of ecological restoration in dry-hot river valleys[J]. Guangxi Forestry Science, 52(1): 141-145.
DOI |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn