Ecology and Environment ›› 2024, Vol. 33 ›› Issue (6): 919-926.DOI: 10.16258/j.cnki.1674-5906.2024.06.009
• Research Article [Environmental Sciences] • Previous Articles Next Articles
PAN Guang1,2(), MIAO Yaru1, GU Shumao3, TANG Houquan2, MAO Shushuai1, ZHANG Guiqin1, YAN Xuejun2,*(
)
Received:
2023-11-15
Online:
2024-06-18
Published:
2024-07-30
Contact:
YAN Xuejun
潘光1,2(), 苗亚茹1, 谷树茂3, 唐厚全2, 毛书帅1, 张桂芹1, 闫学军2,*(
)
通讯作者:
闫学军
作者简介:
潘光(1968年生),男,研究员,主要从事环境监测研究工作。E-mail: 13969150728@163.com
基金资助:
CLC Number:
PAN Guang, MIAO Yaru, GU Shumao, TANG Houquan, MAO Shushuai, ZHANG Guiqin, YAN Xuejun. Component Characteristics and Emission Estimation of Exhaust Gas from Different Types of Coal-fired Heating Enterprises in Ji’nan, China[J]. Ecology and Environment, 2024, 33(6): 919-926.
潘光, 苗亚茹, 谷树茂, 唐厚全, 毛书帅, 张桂芹, 闫学军. 济南市不同类型燃煤供暖企业废气组分特征及排放估算[J]. 生态环境学报, 2024, 33(6): 919-926.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.06.009
监测对象 | 锅炉类型及台数 | 废气处理工艺 | 燃料含硫率/% | 废气排放量/(m3·h−1) | 锅炉吨位/(t·h−1) |
---|---|---|---|---|---|
热电厂 1# | 循环流化床锅炉, 4台 | 低氮燃烧+SNCR+氨水 (13.0%) 脱硝; 电袋复合除尘; 石灰-石膏法脱硫 (两炉一塔, 7层喷淋单塔双循环); 湿电除尘 | 1.09 | 2.84×105 | 75.0 |
热源厂 2# | 循环流化床锅炉, 6台 | 低氮燃烧+SNCR+尿素脱硝; 布袋除尘; 石灰石-石膏法脱硫 (单塔双循环, 3+2层喷淋); 湿电除尘 | 0.400, 采用水煤浆 | 3.58×105 | 100 |
电厂 3# | 煤粉炉, 4台 | SCR+液氨脱硝 (3层催化剂); 电袋复合除尘器; 石灰石-石膏法脱硫 (一炉双塔, 4+3层喷淋); 湿电除尘 | 1.10 | 1.21×106 | 3000 |
Table 1 Basic situation of coal-fired heating enterprises
监测对象 | 锅炉类型及台数 | 废气处理工艺 | 燃料含硫率/% | 废气排放量/(m3·h−1) | 锅炉吨位/(t·h−1) |
---|---|---|---|---|---|
热电厂 1# | 循环流化床锅炉, 4台 | 低氮燃烧+SNCR+氨水 (13.0%) 脱硝; 电袋复合除尘; 石灰-石膏法脱硫 (两炉一塔, 7层喷淋单塔双循环); 湿电除尘 | 1.09 | 2.84×105 | 75.0 |
热源厂 2# | 循环流化床锅炉, 6台 | 低氮燃烧+SNCR+尿素脱硝; 布袋除尘; 石灰石-石膏法脱硫 (单塔双循环, 3+2层喷淋); 湿电除尘 | 0.400, 采用水煤浆 | 3.58×105 | 100 |
电厂 3# | 煤粉炉, 4台 | SCR+液氨脱硝 (3层催化剂); 电袋复合除尘器; 石灰石-石膏法脱硫 (一炉双塔, 4+3层喷淋); 湿电除尘 | 1.10 | 1.21×106 | 3000 |
序号 | 组分 | 本研究 | 阳泉市 (王毓秀等, | 北京市 (马召辉等, | 烟台市 (温杰等, | 西安市 (夏永军等, | ||
---|---|---|---|---|---|---|---|---|
1# | 2# | 3# | ||||||
1 | SO42− | 11.8±7.80 | 5.90±0.824 | 23.0±5.70 | 14.5 | 5.77 | 7.80 | 27.0 |
2 | Cl− | 4.51±0.741 | 1.98±1.68 | 4.76±2.13 | 1.02 | 1.85 | 9.30 | 7.88 |
3 | NH4+ | 3.31±0.272 | 3.37±0.723 | 13.1±3.33 | 6.89 | 0.577 | - | 13.8 |
4 | NO3− | 2.05±0.214 | 1.24±0.398 | 3.83±1.05 | 6.89 | 1.48 | 0.000 | - |
5 | Ca2+ | 1.68±0.433 | 11.6±0.434 | 3.91±0.321 | - | - | - | - |
6 | Mg2+ | 0.844±0.359 | 2.52±0.627 | 1.19±0.172 | - | - | - | - |
7 | K+ | 0.295±0.442 | 1.39±2.40 | 0.125±0.011 | - | - | - | - |
8 | Na+ | 0.273±0.284 | 0.315±0.191 | 5.25±1.24 | - | - | - | - |
离子合计 | 24.7±0.582 | 28.3±0.141 | 55.2±3.14 | - | - | - | - | |
1 | Al | 4.67±1.84 | 2.35±0.852 | 3.58±1.68 | 3.80 | 2.27 | 2.20 | 0.651 |
2 | Si | 1.94±0.555 | 0.222±0.064 | 3.03±0.321 | - | - | - | - |
3 | Fe | 1.51±0.204 | 0.611±0.347 | 1.69±1.36 | 1.04 | 0.864 | 1.60 | 4.69 |
4 | Ca | 1.50±0.282 | 3.68±1.31 | 0.222±0.222 | 14.3 | 3.00 | 3.60 | 4.16 |
5 | Mg | 0.616±0.253 | 0.494±0.288 | 0.418±0.392 | 1.15 | - | 0.200 | 0.118 |
6 | 其他元素占比 | 1.24±0.552 | 0.680±0.171 | 0.531±0.362 | 1.31 | 0.0850 | 0.500 | - |
无机元素合计 | 11.5±1.05 | 8.04±3.19 | 9.47±2.72 | - | - | - | - | |
1 | OC | 17.1±3.81 | 33.5±3.25 | 18.6±4.87 | 5.86 | 12.8 | 1.40 | 6.99 |
2 | EC | 0.487±0.387 | 0.011±0.001 | 0.010±0.000 | 5.03 | 0.396 | 0.100 | 1.05 |
碳组分合计 | 17.6±3.44 | 33.5±3.25 | 18.6±4.87 | - | - | - | - |
Table 2 Mass fraction of main components in exhaust gas PM2.5 %
序号 | 组分 | 本研究 | 阳泉市 (王毓秀等, | 北京市 (马召辉等, | 烟台市 (温杰等, | 西安市 (夏永军等, | ||
---|---|---|---|---|---|---|---|---|
1# | 2# | 3# | ||||||
1 | SO42− | 11.8±7.80 | 5.90±0.824 | 23.0±5.70 | 14.5 | 5.77 | 7.80 | 27.0 |
2 | Cl− | 4.51±0.741 | 1.98±1.68 | 4.76±2.13 | 1.02 | 1.85 | 9.30 | 7.88 |
3 | NH4+ | 3.31±0.272 | 3.37±0.723 | 13.1±3.33 | 6.89 | 0.577 | - | 13.8 |
4 | NO3− | 2.05±0.214 | 1.24±0.398 | 3.83±1.05 | 6.89 | 1.48 | 0.000 | - |
5 | Ca2+ | 1.68±0.433 | 11.6±0.434 | 3.91±0.321 | - | - | - | - |
6 | Mg2+ | 0.844±0.359 | 2.52±0.627 | 1.19±0.172 | - | - | - | - |
7 | K+ | 0.295±0.442 | 1.39±2.40 | 0.125±0.011 | - | - | - | - |
8 | Na+ | 0.273±0.284 | 0.315±0.191 | 5.25±1.24 | - | - | - | - |
离子合计 | 24.7±0.582 | 28.3±0.141 | 55.2±3.14 | - | - | - | - | |
1 | Al | 4.67±1.84 | 2.35±0.852 | 3.58±1.68 | 3.80 | 2.27 | 2.20 | 0.651 |
2 | Si | 1.94±0.555 | 0.222±0.064 | 3.03±0.321 | - | - | - | - |
3 | Fe | 1.51±0.204 | 0.611±0.347 | 1.69±1.36 | 1.04 | 0.864 | 1.60 | 4.69 |
4 | Ca | 1.50±0.282 | 3.68±1.31 | 0.222±0.222 | 14.3 | 3.00 | 3.60 | 4.16 |
5 | Mg | 0.616±0.253 | 0.494±0.288 | 0.418±0.392 | 1.15 | - | 0.200 | 0.118 |
6 | 其他元素占比 | 1.24±0.552 | 0.680±0.171 | 0.531±0.362 | 1.31 | 0.0850 | 0.500 | - |
无机元素合计 | 11.5±1.05 | 8.04±3.19 | 9.47±2.72 | - | - | - | - | |
1 | OC | 17.1±3.81 | 33.5±3.25 | 18.6±4.87 | 5.86 | 12.8 | 1.40 | 6.99 |
2 | EC | 0.487±0.387 | 0.011±0.001 | 0.010±0.000 | 5.03 | 0.396 | 0.100 | 1.05 |
碳组分合计 | 17.6±3.44 | 33.5±3.25 | 18.6±4.87 | - | - | - | - |
项目 | 1# | 2# | 3# |
---|---|---|---|
水溶性离子排放量/kg | 52.0 | 1.10×103 | 2.13×103 |
碳组分排放量/kg | 37.0 | 1.30×103 | 7.16×102 |
无机元素排放量/kg | 23.9 | 2.91×102 | 3.51×102 |
水溶性离子单位烟气排放量/(kg·m−3) | 0.131 | 0.605 | 0.670 |
碳组分单位烟气排放量/(kg·m−3) | 0.094 | 0.715 | 0.226 |
无机元素单位烟气排放量/(kg·m−3) | 0.061 | 0.161 | 0.111 |
Table 3 Emission estimation of main components of PM2.5 in flue gas of typical coal-fired heating enterprises during heating period in Ji’nan City in 2022
项目 | 1# | 2# | 3# |
---|---|---|---|
水溶性离子排放量/kg | 52.0 | 1.10×103 | 2.13×103 |
碳组分排放量/kg | 37.0 | 1.30×103 | 7.16×102 |
无机元素排放量/kg | 23.9 | 2.91×102 | 3.51×102 |
水溶性离子单位烟气排放量/(kg·m−3) | 0.131 | 0.605 | 0.670 |
碳组分单位烟气排放量/(kg·m−3) | 0.094 | 0.715 | 0.226 |
无机元素单位烟气排放量/(kg·m−3) | 0.061 | 0.161 | 0.111 |
项目 | 热电厂 | 热源厂 | 电厂 | 合计 |
---|---|---|---|---|
水溶性离子排放量/kg | 1.42×103 | 5.88×103 | 3.01×104 | 3.74×104 |
碳组分排放量/kg | 1.01×103 | 6.95×103 | 1.01×104 | 1.81×104 |
无机元素排放量/kg | 6.54×102 | 1.61×103 | 4.96×103 | 7.23×103 |
合计 | 3.09×103 | 1.44×104 | 4.52×104 | 6.27×104 |
Table 4 Estimation of emissions of main components of PM2.5 in flue gas of 3 different types of coal-fired heating enterprises during heating period in Ji’nan City in 2022
项目 | 热电厂 | 热源厂 | 电厂 | 合计 |
---|---|---|---|---|
水溶性离子排放量/kg | 1.42×103 | 5.88×103 | 3.01×104 | 3.74×104 |
碳组分排放量/kg | 1.01×103 | 6.95×103 | 1.01×104 | 1.81×104 |
无机元素排放量/kg | 6.54×102 | 1.61×103 | 4.96×103 | 7.23×103 |
合计 | 3.09×103 | 1.44×104 | 4.52×104 | 6.27×104 |
[1] | LI B, SONG Y Q, ZHANG Q L, et al., 2018. Pollutants emission characteristics of an ultra-low coal-fired power unit[J]. Earth and Environmental Science, 159: 012014. |
[2] | HE C Y, HUANG G H, LIU L R, et al., 2021. Assessment and offset of the adverse effects induced by PM2.5 from coal-fired power plants in China[J]. Journal of Cleaner Production, 286: 125397. |
[3] | JIAO X M, LIU X, GU Y Z, et al., 2020. Satellite verification of ultra-low emission reduction effect of coal-fired power plants[J]. Atmospheric Pollution Research, 11(7): 1179-1186. |
[4] | LI Z, JIANG J K, MA Z Z, et al., 2017. Influence of flue gas desulfurization (FGD) installations on emission characteristics of PM2.5from coal-fired power plants equipped with selective catalytic reduction (SCR)[J]. Environmental Pollution, 230: 655-662. |
[5] | MA Z Z, DENG J G, LI Z, et al., 2016. Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies[J]. Atmospheric Environment, 131: 164-170. |
[6] | SHI K F, WU Y Z, LI L Y, 2021. Quantifying and evaluating the effect of urban expansion on the fine particulate matter (PM2.5) emissions from fossil fuel combustion in China[J]. Ecological Indicators, 125: 107541. |
[7] | SHON Z H, KANG M S, PARK G Y, et al., 2020. Impact of temporary emission reduction from a large-scale coal-fired power plant on air quality[J]. Atmospheric Environment: X, 5: 100056. |
[8] | SOFOWOTE U M, HEALY R M, SU Y, et al., 2021. Sources, variability and parameterizations of intra-city factors obtained from dispersion-normalized multi-time resolution factor analyses of PM2.5 in an urban environment[J]. Science of the Total Environment, 761: 143225. |
[9] | ZHANG S, LI D P, GE S S, et al., 2021. Rapid sulfate formation from synergetic oxidation of SO2 by O3 and NO2 under ammonia-rich conditions: Implications for the explosive growth of atmospheric PM2.5 during haze events in China[J]. Science of the Total Environment, 772: 144897. |
[10] | ZHANG Y, XIN X Y, HU D, et al., 2019. Study on stability and reliability of NOx ultra-low emission in coal-fired power plants in China[J]. E3S Web of Conferences, 120(1): 03002. |
[11] | ZHU M H, LAI J K, TUMULURI U, et al., 2017. Reaction pathways and kinetics for selective catalytic reduction (SCR) of acidic NOx emissions from power plants with NH3[J]. ACS Catalysis, 7(12): 8358-8361. |
[12] | 陈家杨, 夏建军, 单明, 等, 2019. 北方冬季供热对大气环境的影响[J]. 区域供热 (5): 20-30. |
CHEN J Y, XIA J Z, SHAN M, et al., 2019. Effect of heating on atmospheric environment in winter in northern China[J]. District Heating (5): 20-30. | |
[13] | 程钰, 刘婷婷, 赵云璐, 等, 2019. 京津冀及周边地区 “2+26” 城市空气质量时空演变与经济社会驱动机理[J]. 经济地理, 39(10): 183-192. |
CHENG Y, LIU T T, ZHAO Y L, et al., 2019. Spatiotemporal evolution and socioeconomic driving mechanism of air quality in Beijing-Tianjin-Hebei and surrounding areas (“2+26” cities)[J]. Economic Geography, 39(10): 183-192. | |
[14] | 丁咚, 祝婕, 田世英, 等, 2022. 基于第二次全国污染源普查数据的 “乌-昌-石” 区域生活源锅炉对大气环境影响分析[J]. 新疆环境保护, 44(1): 1-7. |
DING D, ZHU J, TIAN S Y, et al., 2022. Analysis of the influence of domestic boiler on atmospheric environment in Urumqi-Changji-Shihezi area based on the data of the second national survey of pollution sources[J]. Environmental Protection of Xinjiang, 44(1): 1-7. | |
[15] | 段雷, 马子轸, 李振, 等, 2015. 燃煤电厂排放细颗粒物的水溶性无机离子特征综述[J]. 环境科学, 36(3): 1117-1122. |
DUAN L, MA Z Z, LI Z, et al., 2015. Characteristics of water soluble inorganic ions in fine particles emitted from coal-fired power plants[J]. Environmental Science, 36(3): 1117-1122. | |
[16] | 冯小琼, 陈军辉, 熊文朋, 等, 2019. 四川省典型工业行业PM2.5成分谱分析[J]. 环境科学, 40(3): 1043-1051. |
FENG X Q, CHEN J H, XIONG W P, et al., 2019. Fine particulate matter source profile of typical industries in Sichuan Province[J]. Environmental Science, 40(3): 1043-1051. | |
[17] |
郭雯雯, 陈永金, 刘阁, 等, 2020. 2016-2019年长江中游城市群空气质量时空变化特征及影响因素分析[J]. 生态环境学报, 29(10): 2034-2044.
DOI |
GUO W W, CHEN Y J, LIU G, et al., 2020. Analysis on the characteristics and influencing factors of air quality of urban agglomeration in the middle reaches of the Yangtze River in 2016 to 2019[J]. Ecology and Environmental Sciences, 29(10): 2034-2044. | |
[18] | 胡月琪, 马召辉, 冯亚君, 等, 2015. 北京市燃煤锅炉烟气中水溶性离子排放特征[J]. 环境科学, 36(6): 1966-1974. |
HU Y Q, MA Z H, FENG Y J, et al., 2015. Emission characteristics of water-soluble ions in fumes of coal fired boilers in Beijing[J]. Environmental Science, 36(6): 1966-1974. | |
[19] | 环境保护部, 国家质量监督检验检疫总局, 2011. 火电厂大气污染物排放标准: GB 13223—2011[S]. 北京: 中国标准出版社. |
Ministry of Environmental Protection, General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China, 2011. Emission standards for air pollutants for thermal power plants: GB 13223—2011 [S]. Beijing: China Standards Press. | |
[20] | 李超, 李兴华, 段雷, 等, 2009. 燃煤工业锅炉可吸入颗粒物的排放特征[J]. 环境科学, 30(3): 650-655. |
LI C, LI X H, DUAN L, et al., 2009. Emission characteristics of PM10 from coal fired industrial boiler[J]. Environmental Science, 30(3): 650-655. | |
[21] | 李松, 郎建垒, 程水源, 等, 2016. 典型固定燃烧源颗粒物成分谱特征研究[J]. 安全与环境学报, 16(5): 312-319. |
LI S, LANG J L, CHENG S Y, et al., 2016. Analysis of the profiles characteristic features of the particulate matters in regard to the stationary coal combus tion sources[J]. Journal of Safety and Environment, 16(5): 312-319. | |
[22] | 梁云平, 王则武, 马召辉, 等, 2016. 燃煤锅炉湿法脱硫烟气中颗粒物排放特征[J]. 中国环境监测, 32(5): 35-39. |
LIANG Y P, WANG Z W, MA Z H, et al., 2016. Study on the particle matter emission characteristics of flue gas from coal-fired boilers equipped with wet desulphurization[J]. Environmental Monitoring in China, 32(5): 35-39. | |
[23] | 刘素, 马彤, 杨艳, 等, 2019. 太原市冬季PM2.5化学组分特征与来源解析[J]. 环境科学, 40(4): 1537-1544. |
LIU S, MA T, YANG Y, et al., 2019. Chemical composition characteristics and source apportionment of PM2.5 during winter in Taiyuan[J]. Environmental Science, 40(4): 1537-1544. | |
[24] | 刘艳梅, 闫静, 徐文帅, 等, 2020. 超低排放改造后燃煤电厂常规大气污染物排放特征[J]. 环境科学学报, 40(6): 1967-1975. |
LIU Y M, YAN J, XU W S, et al., 2020. Emission characteristics of conventional air pollutants in coal-fired power plants after ultra-low emission transformation[J]. Acta Scientiae Circumstantiae, 40(6): 1967-1975. | |
[25] | 陆炳, 孔少飞, 韩斌, 等, 2011. 燃煤锅炉排放颗粒物成分谱特征研究[J]. 煤炭学报, 36(11): 1928-1933. |
LU B, KONG S F, HAN B, et al., 2011. Source profile of TSP and PM10 from coal-fired boilers[J]. Journal of China Coal Science, 36(11): 1928-1933. | |
[26] | 吕柏霖, 杨乃旺, 2021. 西安市集中供热燃煤锅炉排放PM2.5和PM10组分特征[J]. 环保科技, 27(5): 37-42. |
LÜ B L, YANG N W, 2021. Composition characteristics of PM2.5 and PM10 from coal fired central heating boilers in Xi’an[J]. Environmental Protection Technology, 27(5): 37-42. | |
[27] | 吕武学, 于燕飞, 曲保忠, 等, 2020. 燃煤电厂脱硫废水零排放技术现状与发展[J]. 洁净煤技术, 26(4): 11-20. |
LÜ W X, YU Y F, QU B Z, et al., 2020. Present situation and development of zero-discharge technology for desulfurization wastewater in coal-fired power plants[J]. Clean Coal Technology, 26(4): 11-20. | |
[28] | 马召辉, 梁云平, 张健, 等, 2015. 北京市典型排放源PM2.5成分谱研究[J]. 环境科学学报, 35(12): 4043-4052. |
MA Z H, LIANG Y P, ZHANG J, et al., 2015. PM2.5 profiles of typical sources in Beijing[J]. Acta Scientiae Circumstantiae, 35(12): 4043-4052. | |
[29] | 裴冰, 2010. 固定源排气中可凝结颗粒物排放与测试探讨[J]. 中国环境监测, 26(6): 9-12. |
PEI B, 2010. Discussion on the emission issues and testing of condensable particulate matter from exhaust gas of stationary source[J]. Environmental Monitoring in China, 26(6): 9-12. | |
[30] | 齐堃, 戴春岭, 冯媛, 等, 2015. 石家庄市PM2.5工业源成分谱的建立及分析[J]. 河北工业科技, 32(1): 78-84. |
QI K, DAI C L, FENG Y, et al., 2015. Establishment and analysis of PM2.5 industrial source profiles in Shijiazhuang City[J]. Hebei Journal of Industrial Science and Technology, 32(1): 78-84. | |
[31] | 山东省环境保护厅, 山东省质量技术监督局, 2018. 锅炉大气污染物排放标准: DB37/ 2374—2018[S]. http://sthj.shandong.gov.cn/zwgk/gsgg/201807/t20180711_1400335.html. |
Environmental Protection Department of Shandong Province, Shandong Provincial Bureau of Quality and Technical Supervision, 2018. Emission standard of air pollutants for boilers: DB37/ 2374—2018[S]. http://sthj.shandong.gov.cn/zwgk/gsgg/201807/t20180711_1400335.html. | |
[32] | 田莎莎, 张显, 卞思思, 等, 2019. 沈阳市PM2.5污染组分特征及其来源解析[J]. 中国环境科学, 39(2): 487-496. |
TIAN S S, ZHANG X, BIAN S S, et al., 2019. Characteristics of PM2.5 pollution components and their sources in Shenyang[J]. China Environmental Science, 39(2): 487-496. | |
[33] | 王成, 闫雨龙, 谢凯, 等, 2020. 阳泉市秋冬季PM2.5化学组分及来源分析[J]. 环境科学, 41(3): 1036-1044. |
WANG C, YAN Y L, XIE K, et al., 2020. Analysis of chemical components and sources of PM2.5 during autumn and winter in Yangquan City[J]. Environmental Science, 41(3): 1036-1044. | |
[34] | 王圣, 朱法华, 王慧敏, 等, 2011. 基于实测的燃煤电厂细颗粒物排放特性分析与研究[J]. 环境科学学报, 31(3): 630-635. |
WANG S, ZHU F H, WANG H M, et al., 2011. Fine particle emission characteristics from coal-fired power plants based on field tests[J]. Acta Scientiae Circumstantiae, 31(3): 630-635. | |
[35] | 王书肖, 赵秀娟, 李兴华, 等, 2009. 工业燃煤链条炉细粒子排放特征研究[J]. 环境科学, 30(4): 963-968. |
WANG S X, ZHAO X J, LI X H, et al., 2009. Emission characteristics of fine particles from grate firing boilers[J]. Environmental Science, 30(4): 963-968. | |
[36] | 王毓秀, 彭林, 王燕, 等, 2016. 电厂燃煤烟尘PM2.5中化学组分特征[J]. 环境科学, 37(1): 60-65. |
WANG Y X, PENG L, WANG Y, et al., 2016. Characteristics of chemical components in PM2.5 from the coal dust of power plants[J]. Environmental Science, 37(1): 60-65. | |
[37] | 温杰, 李博, 张秀丽, 等, 2019. 烟台市典型工业排放PM2.5源成分谱特征研究[J]. 环境科学研究, 32(8): 1333-1339. |
WEN J, LI B, ZHANG X L, et al., 2019. PM2.5 profiles of typical industrial emissions in Yantai City, China[J]. Research of Environmental Sciences, 32(8): 1333-1339. | |
[38] | 夏永军, 黄学敏, 宋文斌, 等, 2017. 西安市燃煤锅炉排放颗粒物中PM2.5和PM10的组分研究[J]. 环境污染与防治, 39(2): 207-211. |
XIA Y J, HUANG X M, SONG W B, et al., 2017. Components of PM2.5 and PM10 in coal fired boiler particulate matter of Xi’an city[J]. Prevention and Control of Environmental Pollution, 39(2): 207-211. | |
[39] | 徐健, 黄成, 李莉, 等, 2018. 长三角地区中小燃煤锅炉PM2.5成分谱特征[J]. 环境科学, 39(4): 1493-1501. |
XU J, HUANG C, LI L, et al., 2018. Chemical composition characteristics of PM2.5 emitted by medium and small capacity coal-fired boilers in the Yangtze River delta region[J]. Environmental Science, 39(4): 1493-1501. | |
[40] | 徐媛, 孙韧, 高翔, 等, 2016. 供热锅炉颗粒物排放特征实测研究[J]. 环境科学与技术, 39(5): 70-74. |
XU Y, SUN R, GAO X, et al., 2016. Experiment study on emission characteristics of particle from heat-only boilers[J]. Environmental Science & Technology, 39(5): 70-74. | |
[41] | 赵雪, 程茜, 侯俊先, 等, 2018. 脱硫脱硝行业2017年发展综述[J]. 中国环保产业 (7): 10-24. |
ZHAO X, CHENG Q, HOU J X, et al., 2018. Development report on desulfurization and denitration industry in 2017[J]. China Environmental Protection Industry (7): 10-24. |
[1] | ZHANG Guiqin, WANG Yunbo, DU Qiyue, YAN Huaizhong, LI Siyuan, SHI Jinghua, LIU Shijie, ZHU Wenqi, SUN Youmin. Characteristics and Emission Estimates of Carbon Components in Particulate Matter Emitted from Diesel-type Mobile Sources in Ji’nan [J]. Ecology and Environment, 2024, 33(3): 408-417. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn