Ecology and Environment ›› 2024, Vol. 33 ›› Issue (4): 585-596.DOI: 10.16258/j.cnki.1674-5906.2024.04.009
• Research Article [Environmental Sciences] • Previous Articles Next Articles
ZHANG Yichun1,2(), YU Zhen3, YUAN Yong1,2,*(
)
Received:
2024-02-01
Online:
2024-04-18
Published:
2024-05-31
Contact:
YUAN Yong
通讯作者:
袁勇
作者简介:
张仪春(1999年生),女,硕士研究生,研究方向为水热腐殖化人工腐殖质。E-mail: 1240620966@qq.com
基金资助:
CLC Number:
ZHANG Yichun, YU Zhen, YUAN Yong. Spectroscopic and Electrochemical Characteristics of Artificial Humic Substances Produced by Hydrothermal Humification[J]. Ecology and Environment, 2024, 33(4): 585-596.
张仪春, 余震, 袁勇. 水热腐殖化人工腐殖质的光谱和电化学特性研究[J]. 生态环境学报, 2024, 33(4): 585-596.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.04.009
腐殖质样品 | AHA | SHA | PHA | AFA | SFA | PFA |
---|---|---|---|---|---|---|
SUVA254 | 0.057 | 0.068 | 0.056 | 0.011 | 0.048 | 0.047 |
w(C)/% | 62.81 | 46.41 | 49.85 | 47.23 | 42.36 | 46.69 |
w(H)/% | 6.14 | 4.14 | 4.34 | 5.72 | 4.54 | 4.52 |
w(O)/% | 26.91 | 44.14 | 41.95 | 45.12 | 47.78 | 45.1 |
w(N)/% | 2.54 | 4.36 | 2.72 | 1.87 | 4.72 | 2.46 |
w(S)/% | 0.38 | 0.44 | 0.49 | 0.57 | 0.47 | 0.37 |
H/C | 0.098 | 0.089 | 0.087 | 0.121 | 0.107 | 0.097 |
O/C | 0.43 | 0.95 | 0.84 | 0.96 | 1.13 | 0.97 |
N/C | 0.040 | 0.094 | 0.055 | 0.040 | 0.111 | 0.053 |
HIX | 0.67 | 0.28 | 0.14 | 0.56 | 0.2 | 0.18 |
FI | 1.21 | 0.78 | 0.73 | 1.92 | 0.93 | 0.85 |
Table 1 Optical properties, elemental composition of humic substances
腐殖质样品 | AHA | SHA | PHA | AFA | SFA | PFA |
---|---|---|---|---|---|---|
SUVA254 | 0.057 | 0.068 | 0.056 | 0.011 | 0.048 | 0.047 |
w(C)/% | 62.81 | 46.41 | 49.85 | 47.23 | 42.36 | 46.69 |
w(H)/% | 6.14 | 4.14 | 4.34 | 5.72 | 4.54 | 4.52 |
w(O)/% | 26.91 | 44.14 | 41.95 | 45.12 | 47.78 | 45.1 |
w(N)/% | 2.54 | 4.36 | 2.72 | 1.87 | 4.72 | 2.46 |
w(S)/% | 0.38 | 0.44 | 0.49 | 0.57 | 0.47 | 0.37 |
H/C | 0.098 | 0.089 | 0.087 | 0.121 | 0.107 | 0.097 |
O/C | 0.43 | 0.95 | 0.84 | 0.96 | 1.13 | 0.97 |
N/C | 0.040 | 0.094 | 0.055 | 0.040 | 0.111 | 0.053 |
HIX | 0.67 | 0.28 | 0.14 | 0.56 | 0.2 | 0.18 |
FI | 1.21 | 0.78 | 0.73 | 1.92 | 0.93 | 0.85 |
腐殖质样品 | AHA | SHA | PHA | AFA | SFA | PFA |
---|---|---|---|---|---|---|
Formula number | 978 | 1076 | 556 | 1027 | 713 | 1065 |
N(H)/N(C) | 1.13 | 0.98 | 1.44 | 1.02 | 0.98 | 1.03 |
N(O)/N(C) | 0.45 | 0.58 | 0.33 | 0.57 | 0.59 | 0.57 |
N(N)/N(C) | 0.036 | 0.044 | 0.027 | 0.016 | 0.013 | 0.014 |
N(S)/N(C) | 0.012 | 0.021 | 0.007 | 0.007 | 0.008 | 0.008 |
AImod | 0.35 | 0.40 | 0.18 | 0.33 | 0.35 | 0.32 |
DBE | 17.84 | 19.91 | 13.05 | 22.19 | 23.15 | 22.25 |
DBE/C | 0.49 | 0.57 | 0.33 | 0.53 | 0.55 | 0.52 |
Table 2 Iintensity weighted averaged values for molecular composition of humic substances
腐殖质样品 | AHA | SHA | PHA | AFA | SFA | PFA |
---|---|---|---|---|---|---|
Formula number | 978 | 1076 | 556 | 1027 | 713 | 1065 |
N(H)/N(C) | 1.13 | 0.98 | 1.44 | 1.02 | 0.98 | 1.03 |
N(O)/N(C) | 0.45 | 0.58 | 0.33 | 0.57 | 0.59 | 0.57 |
N(N)/N(C) | 0.036 | 0.044 | 0.027 | 0.016 | 0.013 | 0.014 |
N(S)/N(C) | 0.012 | 0.021 | 0.007 | 0.007 | 0.008 | 0.008 |
AImod | 0.35 | 0.40 | 0.18 | 0.33 | 0.35 | 0.32 |
DBE | 17.84 | 19.91 | 13.05 | 22.19 | 23.15 | 22.25 |
DBE/C | 0.49 | 0.57 | 0.33 | 0.53 | 0.55 | 0.52 |
名称 | 描述 | EAC/(mmol·g -1) | EDC/(mmol·g -1) | ETC/(mmol·g -1) | 来源 |
---|---|---|---|---|---|
AHA | 人工胡敏酸 | 1.85 | 0.50 | 2.35 | 实验数据 |
SHA | 黑土胡敏酸 | 1.10 | 0.51 | 1.61 | 实验数据 |
PHA | 泥炭土胡敏酸 | 0.71 | 0.49 | 1.20 | 实验数据 |
AFA | 人工富里酸 | 2.07 | 0.66 | 2.73 | 实验数据 |
SFA | 黑土富里酸 | 2.87 | 0.51 | 3.38 | 实验数据 |
PFA | 泥炭土富里酸 | 2.26 | 0.53 | 2.79 | 实验数据 |
AErShan-HA | 内蒙古阿尔山土壤胡敏酸 | 0.24 | 0.45 | 0.69 | Tan et al., |
HA | 汕头砷污染稻田土 | 0.48 | 0.59 | 1.07 | Qiao et al., |
CM-HA | 鸡粪堆肥提取的胡敏酸 | 2.50 | 0.54 | 3.04 | Zhao et al., |
DCM-HA | 牛粪堆肥提取的胡敏酸 | 1.56 | 0.60 | 2.16 | Zhao et al., |
FVW-HA | 果蔬堆肥提取的胡敏酸 | 0.93 | 0.91 | 1.83 | Zhao et al., |
WW-HA | 杂草堆肥提取的胡敏酸 | 0.92 | 0.85 | 1.76 | Zhao et al., |
SW-HA | 玉米秸秆堆肥提取的胡敏酸 | 1.77 | 0.82 | 2.59 | Zhao et al., |
SS-HA | 污水污泥堆肥提取的胡敏酸 | 1.77 | 0.66 | 2.43 | Zhao et al., |
AErShan-FA | 内蒙古阿尔山土壤富里酸 | 0.26 | 0.27 | 0.53 | Tan et al., |
FA | 汕头砷污染稻田土 | 0.62 | 0.54 | 1.16 | Qiao et al., |
CM-FA | 鸡粪堆肥提取的富里酸 | 1.18 | 0.80 | 1.98 | Zhao et al., |
DCM-FA | 牛粪堆肥提取的富里酸 | 1.08 | 0.88 | 1.96 | Zhao et al., |
FVW-FA | 果蔬堆肥提取的富里酸 | 1.36 | 1.31 | 2.68 | Zhao et al., |
WW-FA | 杂草堆肥提取的富里酸 | 1.44 | 0.64 | 2.08 | Zhao et al., |
SW-FA | 玉米秸秆堆肥提取的富里酸 | 1.33 | 0.50 | 1.83 | Zhao et al., |
SS-FA | 污水污泥堆肥提取的富里酸 | 1.06 | 0.99 | 2.05 | Zhao et al., |
HA | 胡敏酸电子转移能力均值 | 1.26 | 0.63 | 1.88 | |
FA | 富里酸电子转移能力均值 | 1.41 | 0.69 | 2.11 |
Table 3 EAC and EDC of various humic substances
名称 | 描述 | EAC/(mmol·g -1) | EDC/(mmol·g -1) | ETC/(mmol·g -1) | 来源 |
---|---|---|---|---|---|
AHA | 人工胡敏酸 | 1.85 | 0.50 | 2.35 | 实验数据 |
SHA | 黑土胡敏酸 | 1.10 | 0.51 | 1.61 | 实验数据 |
PHA | 泥炭土胡敏酸 | 0.71 | 0.49 | 1.20 | 实验数据 |
AFA | 人工富里酸 | 2.07 | 0.66 | 2.73 | 实验数据 |
SFA | 黑土富里酸 | 2.87 | 0.51 | 3.38 | 实验数据 |
PFA | 泥炭土富里酸 | 2.26 | 0.53 | 2.79 | 实验数据 |
AErShan-HA | 内蒙古阿尔山土壤胡敏酸 | 0.24 | 0.45 | 0.69 | Tan et al., |
HA | 汕头砷污染稻田土 | 0.48 | 0.59 | 1.07 | Qiao et al., |
CM-HA | 鸡粪堆肥提取的胡敏酸 | 2.50 | 0.54 | 3.04 | Zhao et al., |
DCM-HA | 牛粪堆肥提取的胡敏酸 | 1.56 | 0.60 | 2.16 | Zhao et al., |
FVW-HA | 果蔬堆肥提取的胡敏酸 | 0.93 | 0.91 | 1.83 | Zhao et al., |
WW-HA | 杂草堆肥提取的胡敏酸 | 0.92 | 0.85 | 1.76 | Zhao et al., |
SW-HA | 玉米秸秆堆肥提取的胡敏酸 | 1.77 | 0.82 | 2.59 | Zhao et al., |
SS-HA | 污水污泥堆肥提取的胡敏酸 | 1.77 | 0.66 | 2.43 | Zhao et al., |
AErShan-FA | 内蒙古阿尔山土壤富里酸 | 0.26 | 0.27 | 0.53 | Tan et al., |
FA | 汕头砷污染稻田土 | 0.62 | 0.54 | 1.16 | Qiao et al., |
CM-FA | 鸡粪堆肥提取的富里酸 | 1.18 | 0.80 | 1.98 | Zhao et al., |
DCM-FA | 牛粪堆肥提取的富里酸 | 1.08 | 0.88 | 1.96 | Zhao et al., |
FVW-FA | 果蔬堆肥提取的富里酸 | 1.36 | 1.31 | 2.68 | Zhao et al., |
WW-FA | 杂草堆肥提取的富里酸 | 1.44 | 0.64 | 2.08 | Zhao et al., |
SW-FA | 玉米秸秆堆肥提取的富里酸 | 1.33 | 0.50 | 1.83 | Zhao et al., |
SS-FA | 污水污泥堆肥提取的富里酸 | 1.06 | 0.99 | 2.05 | Zhao et al., |
HA | 胡敏酸电子转移能力均值 | 1.26 | 0.63 | 1.88 | |
FA | 富里酸电子转移能力均值 | 1.41 | 0.69 | 2.11 |
[1] | AESCHBACHER M, GRAF C, SCHWARZENBACH R P, et al., 2012. Antioxidant properties of humic substances[J]. Environmental Science & Technology, 46(9): 4916-4925. |
[2] | AESCHBACHER M, VERGARI D, SCHWARZENBACH R P, et al., 2011. Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids[J]. Environmental Science & Technology, 45(19): 8385-8394. |
[3] | AI S, MENG X, ZHANG Z, et al., 2023. Artificial humic acid regulates the impact of fungal community on soil macroaggregates formation[J]. Chemosphere, 332: 138822. |
[4] | CHEN M L, LIU S S, BI M H, et al., 2022a. Aging behavior of microplastics affected DOM in riparian sediments: From the characteristics to bioavailability[J]. Journal of Hazardous Materials, 431: 128522. |
[5] |
CHEN P C, TAO S T, ZHENG P, 2016. Efficient and repeated production of succinic acid by turning sugarcane bagasse into sugar and support[J]. Bioresource Technology, 211: 406-413.
DOI PMID |
[6] | CHEN P F, YANG R J, PEI Y H, et al., 2022b. Hydrothermal synthesis of similar mineral-sourced humic acid from food waste and the role of protein[J]. Science of the Total Environment, 828: 154440. |
[7] | CORY R M, MCKNIGHT D M, 2005. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter[J]. Environmental Science & Technology, 39(21): 8142-8149. |
[8] | D’ANDRILLI J, SILVERMAN V, BUCKLEY S, et al., 2022. Inferring ecosystem function from dissolved organic matter optical properties: A critical review[J]. Environmental Science & Technology, 56(16): 11146-11161. |
[9] | DARGIE G C, LEWIS S L, LAWSON I T, et al., 2017. Age, extent and carbon storage of the central Congo Basin peatland complex[J]. Nature, 542(7639): 86-90. |
[10] | DEMIR-CAKAN R, BACCILE N, ANTONIETTI M, et al., 2009. Carboxylate-rich carbonaceous materials via one-step hydrothermal carbonization of glucose in the presence of acrylic acid[J]. Chemistry of Materials, 21(3): 484-490. |
[11] | ESPOSITO D, ANTONIETTI M, 2013. Chemical conversion of sugars to lactic acid by alkaline hydrothermal processes[J]. Chemistry Sustainability Energy Materials, 6(6): 989-992. |
[12] | FELLMAN J B, HOOD E, SPENCER R G M, 2010. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review[J]. Limnology and Oceanography, 55(6): 2452-2462. |
[13] | GUO X X, LIU H T, WU S B, 2019. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions[J]. Science of the total Environment, 662: 501-510. |
[14] | GUTH P, GAO C Y, KNORR K H, 2023. Electron accepting capacities of a wide variety of peat materials from around the globe similarly explain CO2 and CH4 formation[J]. Global Biogeochemical Cycles, 37(1): 20. |
[15] | HAN R X, WANG Z, LÜ J T, et al., 2022. Multiple effects of humic components on microbially mediated iron redox processes and production of hydroxyl radicals[J]. Environmental Science & Technology, 56(22): 16419-16427. |
[16] | HE W J, ZHONG Q F, LIU J Y, et al., 2023. Microbially mediated molecular transformations of dissolved organic matter in bioelectrochemical systems treating beer brewery wastewater[J]. Chemical Engineering Journal, 461: 142111. |
[17] | HE X S, XI B D, CUI D Y, et al., 2014. Influence of chemical and structural evolution of dissolved organic matter on electron transfer capacity during composting[J]. Journal of Hazardous Materials, 268: 256-263. |
[18] | HU B, WANG K, WU L H, et al., 2010. Engineering carbon materials from the hydrothermal carbonization process of biomass[J]. Advanced Materials, 22(7): 813-828. |
[19] | ISHII S K L, BOYER T H, 2012. Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: a critical review[J]. Environmental Science & Technology, 46(4): 2006-2017. |
[20] | JIANG J, KAPPLER A, 2008. Kinetics of microbial and chemical reduction of humic substances: Implications for electron shuttling[J]. Environmental Science & Technology, 42(10): 3563-3569. |
[21] | JIANG T, WEI S Q, FLANAGAN D C, et al., 2014. Effect of abiotic factors on the mercury reduction process by humic acids in aqueous systems[J]. Pedosphere, 24(1): 125-136. |
[22] | KANG S H, CHOI W, 2009. Oxidative degradation of organic compounds using zero-valent iron in the presence of natural organic matter serving as an electron shuttle[J]. Environmental Science & Technology, 43(3): 878-883. |
[23] | KLÜPFEL L, PIEPENBROCK A, KAPPLER A, et al., 2014. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments[J]. Nature Geoscience, 7(3): 195-200. |
[24] | LI L, PHUNGSAI P, KURISU F, et al., 2021. Orbitrap mass spectrometry for the molecular characterization of water resource recovery from polluted surface water using membrane bioreactor[J]. Chemosphere, 270: 128771. |
[25] | LI W, LI X, HAN C X, et al., 2023. A new view into three-dimensional excitation-emission matrix fluorescence spectroscopy for dissolved organic matter[J]. Science of the Total Environment, 855: 158963. |
[26] | LOVLEY D R, COATES J D, BLUNT-HARRIS E L, et al., 1996. Humic substances as electron acceptors for microbial respiration[J]. Nature, 382(6590): 445-448. |
[27] | LU Y, HU S W, ZHANG H Y, et al., 2022. Effect of humic acid on bioreduction of facet-dependent hematite by Shewanella putrefaciens CN-32[J]. Science of the Total Environment, 849: 157713. |
[28] |
MANGAL V, STOCK N L, GUÉGUEN C, 2016. Molecular characterization of phytoplankton dissolved organic matter (DOM) and sulfur components using high resolution Orbitrap mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 408(7): 1891-1900.
DOI PMID |
[29] |
MYNENI S C B, BROWN J T, MARTINEZ G A, et al., 1999. Imaging of humic substance macromolecular structures in water and soils[J]. Science, 286(5443): 1335-1337.
PMID |
[30] | NIE J X, YAN S W, LIAN L S, et al., 2020. Development of fluorescence surrogates to predict the ferrate (VI) oxidation of pharmaceuticals in wastewater effluents[J]. Water Research, 185: 116256. |
[31] | OU J J, WEN J L, TAN W B, et al., 2023. A data-driven approach for understanding the structure dependence of redox activity in humic substances[J]. Environmental Research, 219: 115142. |
[32] |
PANDEY A K, PANDEY S D, MISRA V, 2000. Stability constants of metal-humic acid complexes and its role in environmental detoxification[J]. Ecotoxicology and Environmental Safety, 47(2): 195-200.
PMID |
[33] | PICCOLO A, PIETRAMELLARA G, MBAGWU J S C, 1997. Use of humic substances as soil conditioners to increase aggregate stability[J]. Geoderma, 75(3-4): 267-277. |
[34] | QIAO J, LI X M, LI F B, et al., 2019. Humic substances facilitate arsenic reduction and release in flooded paddy soil[J]. Environmental Science & Technology, 53(9): 5034-5042. |
[35] | SHAO Y V, BAO M G, HUO W Z, et al., 2022. Production of artificial humic acid from biomass residues by a non-catalytic hydrothermal process[J]. Journal of Cleaner Production, 335: 130302. |
[36] | STERN N, MEJIA J, HE S, et al., 2018. Dual role of humic substances as electron donor and shuttle for dissimilatory iron reduction[J]. Environmental Science & Technology, 52(10): 5691-5699. |
[37] | SUN B, LI Y S, SONG M J, et al., 2022. Molecular characterization of the composition and transformation of dissolved organic matter during the semi-permeable membrane covered hyperthermophilic composting[J]. Journal of Hazardous Materials, 425: 127496. |
[38] | TAN W B, XI B D, WANG G A, et al., 2017. Increased electron-accepting and decreased electron-donating capacities of soil humic substances in response to increasing temperature[J]. Environmental Science & Technology, 51(6): 3176-3186. |
[39] | TANG C Y, CHENG K, LIU B L, et al., 2022. Artificial humic acid facilitates biological carbon sequestration under freezing-thawing conditions[J]. Science of the Total Environment, 849: 157841. |
[40] | TANG C Y, LI Y L, SONG J P, et al., 2021. Artificial humic substances improve microbial activity for binding CO2[J]. Iscience, 24(6): 102647. |
[41] | WANG C Q, CHENG T F, ZHANG D Y, et al., 2023. Electrochemical properties of humic acid and its novel applications: A tip of the iceberg[J]. Science of the Total Environment, 863: 160755. |
[42] | WANG W, HE C, GAO Y, et al., 2019. Isolation and characterization of hydrophilic dissolved organic matter in waters by ion exchange solid phase extraction followed by high resolution mass spectrometry[J]. Environmental Chemistry Letters, 17: 1857-1866. |
[43] | WEISHAAR J L, AIKEN G R, BERGAMASCHI B A, et al., 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science & Technology, 37(20): 4702-4708. |
[44] | WU F C, EVANS R D, DILLON P J, 2003. Separation and characterization of NOM by high-performance liquid chromatography and on-line three-dimensional excitation emission matrix fluorescence detection[J]. Environmental Science & Technology, 37(16): 3687-3693. |
[45] | YANG C, HOU L X, XI B D, et al., 2022. Contribution of redox-active properties of compost-derived humic substances in hematite bioreduction[J]. Chinese Chemical Letters, 33(5): 2731-2735. |
[46] | YANG F, ANTONIETTI M, 2020a. Artificial humic acids: Sustainable materials against climate change[J]. Advanced Science, 7(5): 1902992. |
[47] | YANG F, ANTONIETTI M, 2020b. The sleeping giant: A polymer View on humic matter in synthesis and applications[J]. Progress in Polymer Science, 100: 101182. |
[48] | YANG F, ZHANG S S, CHENG K, et al., 2019a. A hydrothermal process to turn waste biomass into artificial fulvic and humic acids for soil remediation[J]. Science of the Total Environment, 686: 1140-1151. |
[49] | YANG F, ZHANG S S, SONG J P, et al., 2019b. Synthetic humic acids solubilize otherwise insoluble phosphates to improve soil fertility[J]. Angewandte Chemie, 131(52): 18989-18992. |
[50] |
YANG X F, WANG H M, LI C, et al., 2017. Restoring of glucose metabolism of engineered Yarrowia lipolytica for succinic acid production via a simple and efficient adaptive evolution strategy[J]. Journal of Agricultural and Food Chemistry, 65(20): 4133-4139.
DOI PMID |
[51] | YUAN Z, HE C, SHI Q, et al., 2017. Molecular insights into the transformation of dissolved organic matter in landfill leachate concentrate during biodegradation and coagulation processes using ESI FT-ICR MS[J]. Environmental Science & Technology, 51(14): 8110-8118. |
[52] | ZHANG B P, ZHOU S F, ZHOU L H, et al., 2019. Pyrolysis temperature-dependent electron transfer capacities of dissolved organic matters derived from wheat straw biochar[J]. Science of the Total Environment, 696: 133895. |
[53] | ZHANG S S, SONG J P, DU Q, et al., 2020. Analog synthesis of artificial humic substances for efficient removal of mercury[J]. Chemosphere, 250: 126606. |
[54] |
ZHAO X Y, HE X S, XI B D, et al., 2017. Response of humic-reducing microorganisms to the redox properties of humic substance during composting[J]. Waste Management, 70: 37-44.
DOI PMID |
[55] | ZHI Y C, LI X N, LIAN F, et al., 2022. Nanoscale Iron trioxide catalyzes the synthesis of auxins analogs in artificial humic acids to enhance rice growth[J]. Science of the Total Environment, 848: 157536. |
[56] | ZHOU S F, LIAO Z Y, ZHANG B P, et al., 2021. Photochemical behavior of microbial extracellular polymeric substances in the aquatic environment[J]. Environmental Science & Technology, 55(22): 15090-15099. |
[57] | ZHU J, LI M, WHELAN M, 2018. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review[J]. Science of the Total Environment, 612: 522-537. |
[58] | 崔东宇, 何小松, 席北斗, 等, 2015. 堆肥腐熟前后胡敏酸与富里酸的还原容量比较[J]. 中国环境科学, 35(7): 2087-2094. |
CUI D Y, HE X S, XI B D, et al., 2015. The comparison of reduction capacity between humic acid and fulvic acid extracted from the compost[J]. China Environmental Science, 35(7): 2087-2094. | |
[59] | 黄莎, 王彬, 曾丹, 等, 2020. 不同源胡敏酸的表征及其对磺胺嘧啶光降解的影响[J]. 环境科学学报, 40(1): 260-268. |
HUANG S, WANG B, ZENG D, et al., 2020. Characterization of humic acid from different sources and its effection photodegradation of sulfadiazine[J]. Acta Scientiae Circumstantiae, 40(1): 260-268. | |
[60] | 李柯蒙, 李洁月, 游少鸿, 等, 2022. 猪粪堆肥过程中腐殖酸电子转移机制及光谱演化特征[J]. 环境工程, 40(12): 79-88. |
LI K M, LI J Y, YOU S H, et al., 2022. Electron transfer mechanism and spectral evolution characteristics of humic acids during pig manure composting[J]. Environmental Engineering, 40(12): 79-88. | |
[61] | 柳广飞, 朱佳琪, 于华莉, 等, 2018. 电子穿梭体介导微生物还原铁氧化物的研究进展[J]. 地球科学, 43(S1): 157-170. |
LIU F Y, ZHU J Q, YU H L, et al., 2018. Review on electron- shuttle-mediated microbial reduction of iron oxides minerals[J]. Earth Science, 43(S1): 157-170. | |
[62] | 肖骁, 何小松, 席北斗, 等, 2018. 生活垃圾填埋富里酸电子转移能力与影响因素[J]. 环境化学, 37(4): 679-688. |
XIAO X, HE X S, XI B D, et al., 2018. Electron transfer capacity of fulvic acid and its factors during municipal solid waste landfill[J]. Environmental Chemistry, 37(4): 679-688. | |
[63] | 杨超, 何小松, 席北斗, 等, 2016. 垃圾填埋初期水溶性有机物电子转移能力特征研究[J]. 分析化学, 44(10): 1568-1574. |
YANG C, HE X S, XI B D, et al., 2016. Characteristic study of dissolved organic matter for electron transfer capacity during initial landfill stage[J]. Chinese Journal of Analytical Chemistry, 44(10): 1568-1574. | |
[64] |
张睿含, 智燕彩, 贾明昊, 等, 2023. 生物质废弃物类型和水热pH对人工腐殖酸性能影响[J]. 生态环境学报, 32(8): 1496-1506.
DOI |
ZHANG R H, ZHI Y C, JIA M H, et al., 2023. Effects of feedstock types and hydrothermal solution pH on the properties of artificial humic acids[J]. Ecology and Environmental Sciences, 32(8): 1496-1506. | |
[65] |
张玉龙, 陈雪丽, 吴云当, 2021. 电子穿梭体及其介导的环境与地球化学过程研究进展[J]. 生态环境学报, 30(1): 213-222.
DOI |
ZHANG Y L, CHEN X L, WU Y D, 2021. Electron shuttle-mediated microbial extracellular electron transfer: Mechanisms and geochemical implications[J]. Ecology and Environmental Sciences, 30(1): 213-222. | |
[66] | 赵秀云, 2021. 玉米秸秆堆肥木质素酚类型及微生物对腐殖酸电子转移能力影响研究[D]. 北京: 中国环境科学研究院. |
ZHAO X Y, 2021. Study on effect of lignophenol type and microbes on electron transfer capacity of humic substances during corn stalks compost[D]. Beijing: Chinese Research Academy of Environmental Sciences. |
[1] | WANG Shiping, LI Mei, AN Ya, QIN Haoli. The Effect of Magnesium Modification on Enhancing Cadmium Adsorption Capacity of Wheat Straw Biochar: A Surface Complexation Modeling Approach [J]. Ecology and Environment, 2024, 33(4): 617-625. |
[2] | YAN Xingrui, GONG Ping, WANG Xiaoping, SHANG Lihai, LI Yinong, MAO Feijian, NIU Xuerui, ZHANG Bo. Organochlorine Pollutants in Soils and Grasses in the Three-River Headwater Region: Distributions, Sources, and Ecological Risks [J]. Ecology and Environment, 2024, 33(3): 428-438. |
[3] | LI Gaofan, XU Wenzhuo, WEI Haoming, YAN Zaisheng, YOU Jia, JIANG Helong, HUANG Juan. Preparation of 3D Porous Biochar Adsorbent and Its Adsorption Behavior for Phenanthrene [J]. Ecology and Environment, 2024, 33(2): 261-271. |
[4] | ZHOU Shu, YU Bingyang, DU Kelong, LIN Yuwen, FENG Nengjia, ZHI Dan. Electrochemical Oxidation of Triazolone in Water: Degradation Efficiency, Energy Consumption and Reaction Pathway [J]. Ecology and Environment, 2023, 32(11): 1933-1941. |
[5] | ZHANG Ruihan, ZHI Yancai, JIA Minghao, LI Xiaona, WANG Zhenyu. Effects of Feedstock Types and Hydrothermal Solution pH on the Properties of Artificial Humic Acids [J]. Ecology and Environment, 2023, 32(8): 1496-1506. |
[6] | TONG Yongjie, WANG Yi, HUA Yumei, ZHAO Jianwei, LIU Guanglong, JIANG Yongcan. Transformation of Phosphorus in Sediments Driven by Nitrate and Iron in the Presence of Organic Electron Donor [J]. Ecology and Environment, 2023, 32(7): 1263-1274. |
[7] | WANG Lihua, WANG Lei, XU Duanping, XUE Yang. Adsorption Characteristics of Copper and Cadmium on Coal Colloid [J]. Ecology and Environment, 2023, 32(7): 1293-1300. |
[8] | YAN Xuejun, HAO Saimei, ZHANG Rongrong, QIN Hua, GAO Sulian, WANG Feng, JIN Xianzhong, SUN Youmin, ZHANG Guiqin. Composition Spectrum and Emission Estimation of VOCs from Furniture Malls [J]. Ecology and Environment, 2023, 32(6): 1070-1077. |
[9] | HE Beibei, FAN Shanshan, HONG Nian, LIU An. Variations of Roof Stormwater Quality under Different Storage Types [J]. Ecology and Environment, 2023, 32(3): 567-578. |
[10] | QIN Qin, DUAN Haiqin, SONG Ke, SUN Lijuan, SUN Yafei, ZHOU Bin, XUE Yong. Effect of Conventional Fertilization on the Adsorption-desorption Characteristics and Chemical forms of Cadmium in Soil Water-stable Aggregates [J]. Ecology and Environment, 2022, 31(12): 2403-2413. |
[11] | MENG Suqian, LIU Bo, ZHAO Jiahui, ZHANG Ao, LAI Huajie. Rapid Synthesis of Cationic Solid Phase Extraction Material by Microwave Radiation and Its Application in Extraction of Amine Organic Pollutants [J]. Ecology and Environment, 2022, 31(11): 2161-2168. |
[12] | JIANG Jing, RUAN Chengjie, CHEN Xiaoyu, WU Yi, WANG Yongchuang. Research Progress on Simulated Aging of Microplastics and Its Effects on Pollutant Adsorption [J]. Ecology and Environment, 2022, 31(11): 2263-2274. |
[13] | JIANG Jing, DENG Jingling, SHENG Guangyao. A Review of Biochar Aging and Its Impact on the Adsorption of Heavy Metals [J]. Ecology and Environment, 2022, 31(10): 2089-2100. |
[14] | LEI Yajie, LI Xue, CHANG Chunyan, MAO Xuefei. Adsorption of Mercury Ions in Water by Polystyrene Microplastics [J]. Ecology and Environment, 2022, 31(10): 2048-2057. |
[15] | CHEN Hao, ZHANG Yuying, ZHONG Yan, ZHANG Shiwei, CHEN Junwei, FENG Jialiang. Concentration and Composition of Organic Amines in PM1 in Shanghai [J]. Ecology and Environment, 2022, 31(10): 2019-2027. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn