Ecology and Environment ›› 2022, Vol. 31 ›› Issue (2): 409-420.DOI: 10.16258/j.cnki.1674-5906.2022.02.022
• Reviews • Previous Articles Next Articles
LIU Kehui1,2(), LI Guangluan1,2, LI Chunming1,3, ZHAO Keyi1,2, ZHANG Ningning1,2, XUE Jieyi1,2, LI Yi1,4, YU Fangming1,4,*(
), DUAN Min1,2
Received:
2021-11-16
Online:
2022-02-18
Published:
2022-04-14
Contact:
YU Fangming
刘可慧1,2(), 李广娈1,2, 李春明1,3, 赵珂艺1,2, 张宁宁1,2, 薛洁怡1,2, 李艺1,4, 于方明1,4,*(
), 段敏1,2
通讯作者:
于方明
作者简介:
刘可慧(1976年生),女,教授,博士,主要从事生态恢复、生物修复、数据挖掘等方面的研究。E-mail: coffeeleave@126.com
基金资助:
CLC Number:
LIU Kehui, LI Guangluan, LI Chunming, ZHAO Keyi, ZHANG Ningning, XUE Jieyi, LI Yi, YU Fangming, DUAN Min. A Review of Research on Lijiang Ecological Environment Based on Bibliometric and Knowledge Mapping Analysis Over the Past Four Decades[J]. Ecology and Environment, 2022, 31(2): 409-420.
刘可慧, 李广娈, 李春明, 赵珂艺, 张宁宁, 薛洁怡, 李艺, 于方明, 段敏. 基于文献计量学和知识图谱分析的漓江生态环境40年研究进展[J]. 生态环境学报, 2022, 31(2): 409-420.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.02.022
数据库 Database | 序号 No. | 机构 Institute | 作者 Author | 期刊 Journal |
---|---|---|---|---|
CNKI 数据库 Database | 1 | 桂林理工大学 (51) | 蔡德所 (18) | 广西师范大学学报(自然科学版) (20) |
2 | 广西大学 (32) | 王冬梅 (15) | 生态学报 (16) | |
3 | 广西师范大学 (22) | 任远 (10) | 中国岩溶 (6) | |
4 | 三峡大学 (21) | 吴志强 (9) | 水土保持通报 (4) | |
5 | 广西植物研究所 (17) | 李先琨等 (8) | 水土保持研究等 (4) | |
WoSCC 数据库 Database | 1 | Chinese Acad Sci (12) | Qiuwen Chen (12) | Ecohydrology (3) |
2 | Guangxi Univ (6) | Ruonan Li (8) | Ecological Informatics (3) | |
3 | Guilin Univ Technol (6) | Desuo Cai (4) | Environmental Earth Sciences (3) | |
4 | China Three Gorges Univ (5) | Qingrui Yang (4) | Environmental Science and Pollution Research (3) | |
5 | Chinese Acad Geol Sci et al. (4) | Dongmei Wang (4) | Bulletin of Environmental Contamination and Toxicology et al. (2) |
Table 1 The 5 institutions, authors and journals with most publications in the field of LJEE in recent 40 years
数据库 Database | 序号 No. | 机构 Institute | 作者 Author | 期刊 Journal |
---|---|---|---|---|
CNKI 数据库 Database | 1 | 桂林理工大学 (51) | 蔡德所 (18) | 广西师范大学学报(自然科学版) (20) |
2 | 广西大学 (32) | 王冬梅 (15) | 生态学报 (16) | |
3 | 广西师范大学 (22) | 任远 (10) | 中国岩溶 (6) | |
4 | 三峡大学 (21) | 吴志强 (9) | 水土保持通报 (4) | |
5 | 广西植物研究所 (17) | 李先琨等 (8) | 水土保持研究等 (4) | |
WoSCC 数据库 Database | 1 | Chinese Acad Sci (12) | Qiuwen Chen (12) | Ecohydrology (3) |
2 | Guangxi Univ (6) | Ruonan Li (8) | Ecological Informatics (3) | |
3 | Guilin Univ Technol (6) | Desuo Cai (4) | Environmental Earth Sciences (3) | |
4 | China Three Gorges Univ (5) | Qingrui Yang (4) | Environmental Science and Pollution Research (3) | |
5 | Chinese Acad Geol Sci et al. (4) | Dongmei Wang (4) | Bulletin of Environmental Contamination and Toxicology et al. (2) |
时期 Period | 大类 Keyword category | 小类 Keyword class | 词频为前25的关键词 Top 25 keyword (CF) |
---|---|---|---|
第Ⅰ时期 Period Ⅰ (1981‒1990) | 环境介质 | 水体 | 生活污水 (1); 医院污水 (1); 净化污水 (1) |
土壤 | — | ||
生物 | 动物 | 底栖动物 (1); 寡毛类 (1) | |
植物 | 水生植物群落 (1); 水生高等植物 (1); 马来眼子菜 (1); 水生植物 (1) | ||
微生物 | 总大肠菌群数 (1); 粪大肠菌群数 (1); 粪链球菌 (1) | ||
污染 | 水质污染 (1); 水体污染 (1); 细菌污染 (1) | ||
研究方法 | 生态风险安全与评价 | 监测评价 (1); 水质本底值 (1); 污染起始值 (1); 背景值调查 (1) | |
其他研究方法 | 生物指数 (1) | ||
第Ⅱ时期 Period Ⅱ (1991‒2000) | 环境介质 | 水体 | 漓江桂林段 (1); 水问题 (1); 水环境 (1) |
土壤 | 土壤资源 (1) | ||
生物 | 动物 | — | |
植物 | — | ||
微生物 | — | ||
污染 | 污染物 | 酞酸酯 (1) | |
其他 | 水体污染 (1); 细菌污染 (1) | ||
自然事件与防御保护措施 | 枯水 (1); 洪水 (1); 岩溶坍陷 (1); 工程措施 (1); 非工程措施 (1); 治理 (1); 对策 (1) | ||
研究方法 | 生态风险安全与评价 | — | |
其他研究方法 | 调查 (1); 综合防治 (1); 变化趋势 (1) | ||
第Ⅲ时期 Period Ⅲ (2001‒2010) | 环境介质 | 水体 | 底泥 (3); 水环境 (2); 漓江上游 (1); 水污染 (1) |
土壤 | 红壤侵蚀区 (3); 红壤区 (1) | ||
生物 | 动物 | — | |
植物 | 水葫芦 (1); 漓江上游水源林 (1); 植被结构动态 (1) | ||
微生物 | — | ||
污染 | 污染趋势 (1); 吸附 (1); 汞形态 (1) | ||
研究方法 | 生态风险安全与评价 | 环境承载力 (1); 现状评价 (1) | |
其他研究方法 | 综合分析 (3); 生态恢复 (3); 植被恢复 (2); 多样性 (2); 调查 (1); 量化 (1); 分布特征 (1) | ||
第Ⅳ时期 Period Ⅳ (2011‒2020) | 环境介质 | 水体 | 径流 (4); 漓江上游 (3); 小流域 (2); 水化学 (2) |
土壤 | 土地利用 (6); 土壤 (3) | ||
消落带 | 水陆交错带 (13); 河岸带 (6) | ||
生物 | 动物 | 大型底栖动物 (5); 仔稚鱼 (3); 底栖动物 (3) | |
植物 | 植被覆盖度 (4); 植被 (3); 檵木群落 (3); 枫杨 (2); 光合特性 (2) | ||
微生物 | — | ||
污染 | 污染源 | 重金属 (3) | |
其他 | 非点源污染 (3) | ||
研究方法 | 生态风险安全与评价 | 水质评价 (5); 生态风险 (4) | |
其他研究方法 | 时空变化 (5); 多样性 (3); SWAT模型 (3); 昼夜动态变化 (2); 生物指数 (2) |
Table 2 Research topics analysis in the field of LJEE in recent 40 years based on CNKI database
时期 Period | 大类 Keyword category | 小类 Keyword class | 词频为前25的关键词 Top 25 keyword (CF) |
---|---|---|---|
第Ⅰ时期 Period Ⅰ (1981‒1990) | 环境介质 | 水体 | 生活污水 (1); 医院污水 (1); 净化污水 (1) |
土壤 | — | ||
生物 | 动物 | 底栖动物 (1); 寡毛类 (1) | |
植物 | 水生植物群落 (1); 水生高等植物 (1); 马来眼子菜 (1); 水生植物 (1) | ||
微生物 | 总大肠菌群数 (1); 粪大肠菌群数 (1); 粪链球菌 (1) | ||
污染 | 水质污染 (1); 水体污染 (1); 细菌污染 (1) | ||
研究方法 | 生态风险安全与评价 | 监测评价 (1); 水质本底值 (1); 污染起始值 (1); 背景值调查 (1) | |
其他研究方法 | 生物指数 (1) | ||
第Ⅱ时期 Period Ⅱ (1991‒2000) | 环境介质 | 水体 | 漓江桂林段 (1); 水问题 (1); 水环境 (1) |
土壤 | 土壤资源 (1) | ||
生物 | 动物 | — | |
植物 | — | ||
微生物 | — | ||
污染 | 污染物 | 酞酸酯 (1) | |
其他 | 水体污染 (1); 细菌污染 (1) | ||
自然事件与防御保护措施 | 枯水 (1); 洪水 (1); 岩溶坍陷 (1); 工程措施 (1); 非工程措施 (1); 治理 (1); 对策 (1) | ||
研究方法 | 生态风险安全与评价 | — | |
其他研究方法 | 调查 (1); 综合防治 (1); 变化趋势 (1) | ||
第Ⅲ时期 Period Ⅲ (2001‒2010) | 环境介质 | 水体 | 底泥 (3); 水环境 (2); 漓江上游 (1); 水污染 (1) |
土壤 | 红壤侵蚀区 (3); 红壤区 (1) | ||
生物 | 动物 | — | |
植物 | 水葫芦 (1); 漓江上游水源林 (1); 植被结构动态 (1) | ||
微生物 | — | ||
污染 | 污染趋势 (1); 吸附 (1); 汞形态 (1) | ||
研究方法 | 生态风险安全与评价 | 环境承载力 (1); 现状评价 (1) | |
其他研究方法 | 综合分析 (3); 生态恢复 (3); 植被恢复 (2); 多样性 (2); 调查 (1); 量化 (1); 分布特征 (1) | ||
第Ⅳ时期 Period Ⅳ (2011‒2020) | 环境介质 | 水体 | 径流 (4); 漓江上游 (3); 小流域 (2); 水化学 (2) |
土壤 | 土地利用 (6); 土壤 (3) | ||
消落带 | 水陆交错带 (13); 河岸带 (6) | ||
生物 | 动物 | 大型底栖动物 (5); 仔稚鱼 (3); 底栖动物 (3) | |
植物 | 植被覆盖度 (4); 植被 (3); 檵木群落 (3); 枫杨 (2); 光合特性 (2) | ||
微生物 | — | ||
污染 | 污染源 | 重金属 (3) | |
其他 | 非点源污染 (3) | ||
研究方法 | 生态风险安全与评价 | 水质评价 (5); 生态风险 (4) | |
其他研究方法 | 时空变化 (5); 多样性 (3); SWAT模型 (3); 昼夜动态变化 (2); 生物指数 (2) |
关键词大类 Keyword category | 关键词小类 Keyword class | 词频为前25的关键词 Top 25 keyword (CF) |
---|---|---|
环境介质 Environmental medium | 水体 | Reservoir operation (4); Flow(4); Flow regulation (3) |
土壤 | Land use change (3); Habitat (3) | |
岩溶 | Karst river (2) | |
生物 Creature | 动物 | Fish (3); Competition (3); Fish assemblage (2); Behavior (2); Assemblage (3) |
植物 | Riparian vegetation (3); Community (3); CO2 uptake (2); Community structure (2); Evolution (2) | |
微生物 | — | |
自然事件与防御保护措施 Natural events and protection measures | Conservation (4); Inundation (3) | |
研究方法 Research methods | 生态风险安全与评价 | Environmental risk (2) |
其他研究方法 | Impact (5); Dynamics (4); Diversity (4); Genetic algorithm (3); Cellular automata (2) | |
其他 Others | Dissolved inorganic carbon (3) |
Table 3 Research topics analysis in the field of LJEE based on WoSCC database
关键词大类 Keyword category | 关键词小类 Keyword class | 词频为前25的关键词 Top 25 keyword (CF) |
---|---|---|
环境介质 Environmental medium | 水体 | Reservoir operation (4); Flow(4); Flow regulation (3) |
土壤 | Land use change (3); Habitat (3) | |
岩溶 | Karst river (2) | |
生物 Creature | 动物 | Fish (3); Competition (3); Fish assemblage (2); Behavior (2); Assemblage (3) |
植物 | Riparian vegetation (3); Community (3); CO2 uptake (2); Community structure (2); Evolution (2) | |
微生物 | — | |
自然事件与防御保护措施 Natural events and protection measures | Conservation (4); Inundation (3) | |
研究方法 Research methods | 生态风险安全与评价 | Environmental risk (2) |
其他研究方法 | Impact (5); Dynamics (4); Diversity (4); Genetic algorithm (3); Cellular automata (2) | |
其他 Others | Dissolved inorganic carbon (3) |
聚类及标签 Cluster ID | 大小 Size | 年份 Year | 关键词 Keywords |
---|---|---|---|
#0环境风险 #0 Environmental risk | 20 | 2017 | Environmental risk; Source identification; Heavy metal; Sediment analysis; Metal partitioning; Lijiang river; Karst river; Habitat; Water level; Precipitation; Southwest China; Diel pattern; Acid rain; CO2 flux; Reservoir operation; Dissolved inorganic carbon (dic); Proportion of carbonate weathered (r); Fish assemblages; Headwater stream; Carbonate weathering rate (cwr); Environmental variables; Fish habitat quality; Ecological hydrograph; Landscape ecology index |
#1水位 #1 Water level | 18 | 2018 | Water level; Precipitation; Diel pattern; CO2 flux; Karst river; Lijiang river; Habitat; Environmental risk; Source identification; Heavy metal; Southwest China; Sediment analysis; Acid rain; Metal partitioning; Reservoir operation; Dissolved inorganic carbon (dic); Proportion of carbonate weathered (r); Fish assemblages; Headwater stream; Carbonate weathering rate (cwr); Environmental variables; Fish habitat quality; Ecological hydrograph; Landscape ecology index |
#2生境 #2 Habitat | 17 | 2018 | Habitat; Fish assemblages; Headwater stream; Environmental variables; Lijiang river; Karst river; Water level; Environmental risk; Source identification; Precipitation; Heavy metal; Southwest China; Diel pattern; Sediment analysis; Acid rain; Metal partitioning; CO2 flux; Reservoir operation; Dissolved inorganic carbon (dic); Proportion of carbonate weathered (r); Carbonate weathering rate (cwr); Fish habitat quality; Ecological hydrograph; Landscape ecology index |
#3岩溶河流 #3 Karst river | 15 | 2018 | Karst river; Southwest China; Acid rain; Reservoir operation; Dissolved inorganic carbon (dic); Proportion of carbonate weathered (r); Carbonate weathering rate (cwr); Fish habitat quality; Ecological hydrograph; Landscape ecology index; Habitat; Water level; Environmental risk; Source identification; Precipitation; Heavy metal; Diel pattern; Sediment analysis; Metal partitioning; CO2 flux; Fish assemblages; Headwater stream; Environmental variables; Lijiang river |
#4生境 #4 Habitat | 14 | 2017 | Habitat; Water level; Environmental risk; Source identification; Precipitation; Heavy metal; Southwest China; Lijiang river; Diel pattern; Sediment analysis; Karst river; Acid rain; Metal partitioning; CO2 flux; Reservoir operation; Dissolved inorganic carbon (dic); Proportion of carbonate weathered (r); Fish assemblages; Headwater stream; Carbonate weathering rate (cwr); Environmental variables; Fish habitat quality; Ecological hydrograph; Landscape ecology index |
Table 4 The keywords in each keyword cluster on LJEE in 2016?2020 based on WoSCC database
聚类及标签 Cluster ID | 大小 Size | 年份 Year | 关键词 Keywords |
---|---|---|---|
#0环境风险 #0 Environmental risk | 20 | 2017 | Environmental risk; Source identification; Heavy metal; Sediment analysis; Metal partitioning; Lijiang river; Karst river; Habitat; Water level; Precipitation; Southwest China; Diel pattern; Acid rain; CO2 flux; Reservoir operation; Dissolved inorganic carbon (dic); Proportion of carbonate weathered (r); Fish assemblages; Headwater stream; Carbonate weathering rate (cwr); Environmental variables; Fish habitat quality; Ecological hydrograph; Landscape ecology index |
#1水位 #1 Water level | 18 | 2018 | Water level; Precipitation; Diel pattern; CO2 flux; Karst river; Lijiang river; Habitat; Environmental risk; Source identification; Heavy metal; Southwest China; Sediment analysis; Acid rain; Metal partitioning; Reservoir operation; Dissolved inorganic carbon (dic); Proportion of carbonate weathered (r); Fish assemblages; Headwater stream; Carbonate weathering rate (cwr); Environmental variables; Fish habitat quality; Ecological hydrograph; Landscape ecology index |
#2生境 #2 Habitat | 17 | 2018 | Habitat; Fish assemblages; Headwater stream; Environmental variables; Lijiang river; Karst river; Water level; Environmental risk; Source identification; Precipitation; Heavy metal; Southwest China; Diel pattern; Sediment analysis; Acid rain; Metal partitioning; CO2 flux; Reservoir operation; Dissolved inorganic carbon (dic); Proportion of carbonate weathered (r); Carbonate weathering rate (cwr); Fish habitat quality; Ecological hydrograph; Landscape ecology index |
#3岩溶河流 #3 Karst river | 15 | 2018 | Karst river; Southwest China; Acid rain; Reservoir operation; Dissolved inorganic carbon (dic); Proportion of carbonate weathered (r); Carbonate weathering rate (cwr); Fish habitat quality; Ecological hydrograph; Landscape ecology index; Habitat; Water level; Environmental risk; Source identification; Precipitation; Heavy metal; Diel pattern; Sediment analysis; Metal partitioning; CO2 flux; Fish assemblages; Headwater stream; Environmental variables; Lijiang river |
#4生境 #4 Habitat | 14 | 2017 | Habitat; Water level; Environmental risk; Source identification; Precipitation; Heavy metal; Southwest China; Lijiang river; Diel pattern; Sediment analysis; Karst river; Acid rain; Metal partitioning; CO2 flux; Reservoir operation; Dissolved inorganic carbon (dic); Proportion of carbonate weathered (r); Fish assemblages; Headwater stream; Carbonate weathering rate (cwr); Environmental variables; Fish habitat quality; Ecological hydrograph; Landscape ecology index |
[1] |
BUSYGINA T, RYKOVA V, 2020. Scientometric analysis and mapping of documentary array on the issue “Oil and petroleum products in soil and groundwater”[J]. Environmental Science and Pollution Research, 27(19): 23490-23502.
DOI URL |
[2] |
CAO Y, ZHANG J, YANG M X, et al., 2018. Application of SWAT model with CMADS data to estimate hydrological elements and parameter uncertainty based on sufi-2 algorithm in the Lijiang River basin[J]. Water, 10(6): 742.
DOI URL |
[3] | CHEN C M, 2004. Searching for intellectual turning points: Progressive knowledge domain visualization[J]. Proceedings of the National Academy of Sciences of the United States of America, 101: 5303-5310. |
[4] |
COOMBS S, 1999. Signal detection theory, lateral-line excitation patterns and prey capture behaviour of mottled sculpin[J]. Animal Behaviour, 58(2): 421-430.
DOI URL |
[5] |
DING Y, WU Z Q, ZHU Z J, et al., 2018. Species composition, trend of biodiversity variation and conservation of the fish in Lijiang River (in China)[J]. Environmental Biology of Fishes, 101(5): 675-685.
DOI URL |
[6] |
GAO M H, WU Z Q, HUANG L L, et al., 2018. Length-weight relationships of 13 fish species from the Lijiang River, China[J]. Journal of Applied Ichthyology, 34(1): 180-182.
DOI URL |
[7] |
HAN R, CHEN Q W, BLANCKAERT K, et al., 2013. Fish (Spinibarbus hollandi) dynamics in relation to changing hydrological conditions: physical modelling, individual-based numerical modelling, and case study[J]. Ecohydrology, 6(4): 586-597.
DOI URL |
[8] |
HUANG D, WANG D M, REN Y, 2019c. Using leaf nutrient stoichiometry as an indicator of flood tolerance and eutrophication in the riparian zone of the Lijang River[J]. Ecological Indicators, 98: 821-829.
DOI URL |
[9] |
HUANG J, HUANG L L, WU Z Q, et al., 2019a. Correlation of fish assemblages with habitat and environmental variables in a headwater stream section of Lijiang River[J]. Sustainability, 11(4): 1135.
DOI URL |
[10] |
HUANG L L, HUANG J, WU Z Q, et al., 2019b. Beta diversity partitioning and drivers of variations in fish assemblages in a headwater stream: Lijiang River, China[J]. Water, 11(4): 680.
DOI URL |
[11] |
LI C M, WANG H C, LIAO X L, et al., 2022. Heavy metal pollution in coastal wetlands: A systematic review of studies globally over the past three decades[J]. Journal of Hazardous Materials, DOI: 10.1016/j.jhazmat.2021.127312.
DOI |
[12] |
LI R N, CHEN Q W, TONINA D, et al., 2015. Effects of upstream reservoir regulation on the hydrological regime and fish habitats of the Lijiang River, China[J]. Ecological Engineering, 76: 75-83.
DOI URL |
[13] |
LI W F, HAN R, CHEN Q W, et al., 2010. Individual-based modelling of fish population dynamics in the river downstream under flow regulation[J]. Ecological Informatics, 5(2): 115-123.
DOI URL |
[14] |
LIU K H, LI C M, TANG S Q, et al., 2020. Heavy metal concentration, potential ecological risk assessment and enzyme activity in soils affected by a lead-zinc tailing spill in Guangxi, China[J]. Chemosphere, DOI: 10.1016/j.chemosphere.2020.126415.
DOI |
[15] | LIU K H, GUAN X J, LI C M, et al., 2022. Global perspectives and future research directions for the phytoremediation of heavy metal-contaminated soil: A knowledge mapping analysis from 2001 to 2020 [J]. Frontiers of Environmental Science & Engineering, 16(6): 73. |
[16] |
LIU R H, LIANG S C, LONG W X, et al., 2018. Variations in leaf functional traits across ecological scales in riparian plant communities of the Lijiang River, Guilin, Southwest China[J]. Tropical Conservation Science, DOI: 10.1177/1940082918804680.
DOI |
[17] |
QIN Y B, XIN Z B, WANG D M, 2016. Comparison of topsoil organic carbon and total nitrogen in different flood-risk riparian zones in a Chinese Karst area[J]. Environmental Earth Sciences, DOI: 10.1007/s12665-016-5846-4.
DOI |
[18] |
QIN Y B, XIN Z B, WANG D M, et al., 2017. Soil organic carbon storage and its influencing factors in the riparian woodlands of a Chinese karst area[J]. Catena, 153: 21-29.
DOI URL |
[19] |
QIN Y B, CHEN Z H, DING B J, et al., 2020. Impact of sand mining on the carbon sequestration and nitrogen removal ability of soil in the riparian area of Lijiang River, China[J]. Environmental Pollution, DOI: 10.1016/j.envpol.2020.114220.
DOI |
[20] |
SUN P A, HE S Y, YUAN Y Q, et al., 2019. Effects of aquatic phototrophs on seasonal hydrochemical, inorganic, and organic carbon variations in a typical karst basin, Southwest China[J]. Environmental Science and Pollution Research, 26(32): 32836-32851.
DOI URL |
[21] |
XIAO H, SHAHAB A, XI B D, et al., 2021. Heavy metal pollution, ecological risk, spatial distribution, and source identification in sediments of the Lijiang River, China[J]. Environmental Pollution, DOI: 10.1016/j.envpol.2020.116189.
DOI |
[22] |
YE F, CHEN Q W, LI R A, 2010. Modelling the riparian vegetation evolution due to flow regulation of Lijiang River by unstructured cellular automata[J]. Ecological Informatics, 5(2): 108-114.
DOI URL |
[23] |
ZHANG T, LI J H, PU J B, et al., 2020. Rainfall possibly disturbs the diurnal pattern of CO2 degassing in the Lijiang River, SW China[J]. Journal of Hydrology, DOI: 10.1016/j.jhydrol.2020.125540.
DOI |
[24] |
ZHANG Y L, BAPTISTA A M, 2008. SELFE: A semi-implicit Eulerian-Lagrangian finite-element model for cross-scale ocean circulation[J]. Ocean Modelling, 21(3-4): 71-96.
DOI URL |
[25] |
ZHOU Q, CHEN L, SINGH V P, et al., 2019. Rainfall-runoff simulation in karst dominated areas based on a coupled conceptual hydrological model[J]. Journal of Hydrology, 573: 524-533.
DOI URL |
[26] |
ZHU H Y, LI Y S, WU L J, et al., 2020. Impact of the atmospheric deposition of major acid rain components, especially NH4, on carbonate weathering during recharge in typical karst areas of the Lijiang River basin, southwest China[J]. Applied Geochemistry, DOI: 10.1016/j.apgeochem.2019.104518.
DOI |
[27] | 常显志, 吴志强, 黄亮亮, 等, 2017. 漓江5种常见食用经济鱼类重金属含量分析[J]. 环境科学与技术, 40(9): 203-208. |
CHANG X Z, WU Z Q, HUANG L L, et al., 2017. Analysis of heavy metal content in five kinds of common edible economic fish species of Lijiang River[J]. Environmental Science & Technology, 40(9): 203-208. | |
[28] | 陈朝述, 李俊, 陈孟林, 等, 2015. 桂林市4个城中湖泊夏季浮游植物群落结构与水质评价[J]. 水生态学杂志, 36(3): 25-30. |
CHEN C S, LI J, CHEN M L, et al., 2015. Characterization of summer phytoplankton community and water quality assessment of four Guilin lakes[J]. Journal of Hydroecology, 36(3): 25-30. | |
[29] | 成官文, 1999. 漓江流域水环境综合治理对策[J]. 广西地质, 12(2): 29-32. |
CHEN G W, 1999. Synthesis prevent and bring lijiang river valley under control[J]. Guangxi Geology, 12(2): 29-32. | |
[30] | 代俊峰, 杨艺, 方荣杰, 等, 2017. 漓江流域上游水质分析和污染物定量分割[J]. 中国农村水利水电 (4): 67-71. |
DAI J F, YANG Y, FANG R J, et al., 2017. Water quality analysis and segmentation of the pollution loads in different spatial scales of the upstream of Lijiang River[J]. China rural water and hydropower Journal (4): 67-71. | |
[31] | 丁洋, 吴志强, 黄亮亮, 等, 2016. 漓江中下游基于鱼类生物完整性指数的河流健康评价体系[J]. 四川动物, 35(2): 288-293. |
DING Y, WU Z Q, HUANG L L, et al., 2016. Application of index of biological integrity based on fish to assess the river´s health in the middle and lower reaches of Lijiang River[J]. Sichuan Journal of Zoology, 35(2): 288-293. | |
[32] | 封文利, 吴志强, 黄亮亮, 等, 2015. 漓江中游近岸水域仔稚鱼物种组成及其与生境的关系[J]. 中国科学院大学学报, 32(6): 769-774. |
FENG W L, WU Z Q, HUANG L L, et al., 2015. Species composition and habitats of larval and juvenile fish in the shoreline waters of the middle reaches of Lijiang River[J]. Journal of University of Chinese Academy of Sciences, 32(6): 769-774. | |
[33] | 封文利, 吴志强, 黄亮亮, 等, 2016. 漓江中游近岸水域仔稚鱼群落结构特征[J]. 云南师范大学学报: 自然科学版, 36(2): 59-66. |
FENG W L, WU Z Q, HUANG L L, et al., 2016. Assemblage of larval and juvenile fish in the shoreline waters of the Lijiang River middle reaches[J]. Journal of Yunnan Normal University: Natural Science Edition, 36(2): 59-66. | |
[34] | 高燕彬, 秦玉玲, 高生, 等, 2010. 矿产资源开采引发的地面塌陷与生态环境问题[J]. 内蒙古科技与经济, (21): 125, 130. |
GAO Y B, QIN Y L, GAO S, et al., 2010. Land subsidence and ecological environment problems caused by mining[J]. Inner Mongolia Science Technology & Economy, (21): 125, 130. | |
[35] | 官晓金, 赵珂艺, 刘世玲, 等, 2021. 近30年全球锰污染植物修复研究进展--基于CiteSpace的可视化分析[J]. 广西师范大学学报: 自然科学版, 39(5): 44-57. |
GUAN X J, ZHAO K Y, LIU S L, et al., 2021. Global trends and hot topics in the field of manganese phytoremediation over the past three decades: A review based on Citespace visualization[J]. Journal of Guangxi Normal University: Natural Science Edition, 39(5): 44-57. | |
[36] | 贺正思宇, 谢玲, 梁保平, 等, 2020. 基于CA-Markov模型的漓江流域土地利用模拟研究[J]. 生态科学, 39(5): 142-150. |
HE Z S Y, XIE L, LIANG B P, et al., 2020. Simulation of land use in Li River Basin based on CA-Markov model[J]. Ecological Science, 39(5): 142-150. | |
[37] | 黄端, 王冬梅, 任远, 等, 2017. 漓江水陆交错带植物叶性状对水淹胁迫的响应及经济谱分析[J]. 生态学报, 37(3): 750-759. |
HUANG D, WANG D M, REN Y, et al., 2017. Responses of leaf traits to submergence stress and analysis of the economic spectrum of plant species in an aquatic-terrestrial ecotone, the Li River[J]. Acta Ecologica Sinica, 37(3): 750-759. | |
[38] | 金鉴明, 胡舜士, 陈伟烈, 等, 1981. 广西阳朔漓江河道及其沿岸水生植物群落与环境关系的观察[J]. 广西植物, 1(2): 11-17. |
JIN J M, HU S S, CHEN W L, et al., 1981. The relationship between aquatic plant communities and environment of river channel and banks in the Lijiang River, Yangshuo, Guangxi[J]. Guihaia, 1(2): 11-17. | |
[39] | 李发文, 杨雄, 熊佐芳, 等, 2017. 漓江市区段饮用水源地沉积物重金属污染风险评价[J]. 中国给水排水, 33(9): 62-65. |
LI F W, YANG X, XIONG Z F, et al., 2017. Ecological risk assessment of heavy metals pollution in sediments in urban section of Li River at source water intake zone[J]. China Water & Wastewater, 33(9): 62-65. | |
[40] | 李杰, 王英辉, 刘枝刚, 等, 2011. 漓江桂林市区段沉积物重金属环境地球化学特征[J]. 地球与环境, 39(4): 456-463. |
LI J, WANG Y H, LIU Z G, et al., 2011. Environmental geochemistry of heavy metals in sediments of Lijiang River segment, Guilin city, China[J]. Earth and environment, 39(4): 456-463. | |
[41] | 李宁, 王浩宇, 王金叶, 等, 2019. 漓江流域土地利用时空变化对生态系统服务价值的影响[J]. 桂林理工大学学报, 39(3): 685-692. |
LI N, WANG H Y, WANG J Y, et al., 2019. Impacts of spatiotemporal changes of land use on ecosystem service value along Lijiang River basin[J]. Journal of Guilin University of Technology, 39(3): 685-692. | |
[42] | 李青山, 王冬梅, 信忠保, 2014. 漓江水陆交错带不同立地类型草本植物根系特征[J]. 水土保持通报, 34(6): 236-241. |
LI Q S, WANG D M, XIN Z B, 2014. Root system characteristics of herbaceous plants at different sites of aquatic-terrestrial ecotone of Lijiang River[J]. Bulletin of Soil and Conservation, 34(6): 236-241. | |
[43] | 李勇军, 何武中, 2002. 桂林漓江 “98·6” 特大暴雨洪水分析[J]. 人民珠江 (6): 25-28. |
LI Y J, HE W Z, 2002. Analysis of “98·6” extraordinary rainstorm and flood of Lijiang River in Guilin[J]. People and Pearl River (6): 25-28. | |
[44] | 李卓凌, 王冬梅, 任远, 2018. 漓江水陆交错带截污效果评价[J]. 生态学报, 38(21): 7618-7628. |
LI Z L, WANG D M, REN Y, 2018. Assessment of the interception effect of Lijiang River land and water ecotone[J]. Acta Ecologica Sinica, 38(21): 7618-7628. | |
[45] | 梁榕芬, 刘才, 1984. 漓江水环境本底值与背景值调查研究[J]. 广西水利水电科技 (2): 42-50, 56. |
LIANG R F, LIU C, 1984. Investigation on the background value and background value of Lijiang River water environment[J]. Guangxi Water Resources & Hydropower Engineering (2): 42-50, 56. | |
[46] |
梁士楚, 刘润红, 荣春艳, 等, 2019. 漓江河岸带植物功能性状变异与关联[J]. 植物生态学报, 43(1): 16-26.
DOI |
LIANG S C, LIU R H, RONG C Y, et al., 2019. Variation and correlation of plant functional traits in the riparian zone of the Lijiang River, Guilin, Southwest China[J]. Chinese Journal of Plant Ecology, 43(1): 16-26.
DOI URL |
|
[47] | 罗锦珠, 2006. 桂林漓江洪旱灾害成因分析及综合治理刍议[J]. 人民珠江 (4): 77-79. |
LUO J Z, 2006. Cause analysis and comprehensive treatment of flood and drought disaster in Lijiang River, Guilin[J]. Pearl River (4): 77-79. | |
[48] | 缪钟灵, 1997. 漓江流域主要环境问题[J]. 中国岩溶, 16(2): 161-166. |
MIAO Z L, 1997. The main environment problems of Lijiang River[J]. Carsologica Sinica, 16(2): 161-166. | |
[49] | 欧祖兰, 李先琨, 苏宗明, 等, 2005. 桂林漓江流域马尾松林演替动态[J]. 福建林学院学报, 25(4): 373-378. |
OU Z L, LI X K, SU Z M, et al., 2005. Successional dynamics of Pinus massoniana forest in Lijiang River watershed, Guilin[J]. Journal of Fujian College of Forestry, 25(4): 373-378. | |
[50] | 石大康, 1985. 底栖动物在评价漓江水质污染中的作用[J]. 环境科学, 6(3): 54-58. |
SHI D K, 1985. The role of benthos in evaluating the water pollution of Lijiang River[J]. Environmental Science, 6(3): 54-58. | |
[51] | 覃勇荣, 1987. 漓江水生高等植物调查及其对环保关系与经济利用初探[J]. 河池师专学报: 理科版, (1): 86-95. |
QIN Y R, 1987. Investigation of aquatic higher plants in Lijiang River and its relationship with environmental protection and economic utilization[J]. Journal of Hechi Normal College: Science edition, (1): 86-95. | |
[52] | 王春玲, 蒋麒, 王冬梅, 等, 2016. 基于竞争指数的水陆交错带枫杨生长模型[J]. 农业机械学报, 47(9): 301-308. |
WANG C L, JIANG Q, WANG D M, et al., 2016. Pterocarya stenoptera growth model in aquatic-terrestrial ecotones based on competitiveness index[J]. Transactions of the Chinese Society for Agricultural Machinery, 47(9): 301-308. | |
[53] | 王薇, 张蕾, 2021. 基于CiteSpace的城市环境中细颗粒物研究进展的可视化分析[J]. 生态环境学报, 30(6): 1321-1332. |
WANG W, ZHANG L, 2021. Visual analysis of research progress of fine particles in urban environment based on CiteSpace[J]. Ecology and Environmental Sciences, 30(6): 1321-1332. | |
[54] | 王修信, 王培娟, 朱启疆, 2012. 漓江上游山区复杂地形水热通量的时空变化规律[J]. 农业工程学报, 28(3): 118-122. |
WANG X X, WANG P J, ZHU Q J, 2012. Spatio-temporal variation of water and heat fluxes over complex hilly topography in upper reaches of Lijiang river[J]. Transactions of the CSAE, 28(3): 118-122. | |
[55] | 王修信, 朱启疆, 梁宗经, 2011. 漓江上游植被覆盖度时空变化对地表热场影响[J]. 长江流域资源与环境, 20(12): 1502-1507. |
WANG X X, ZHU Q J, LIANG Z J, 2011. Influence of vegetation coverage spatio-temporal variance on land surface thermal field in upper reaches of the Lijiang River[J]. Resources and Environment in the Yangtze Basin, 20(12): 1502-1507. | |
[56] | 文建辉, 李建, 许睿, 等, 2018. 基于GIS技术和线性结构模型的漓江流域水污染状况分析[J]. 环境监测管理与技术, 30(1): 27-30. |
WEN J H, LI J, XU R, et al., 2018. Analysis of water pollution in the Lijiang River basin based on GIS and linear structural equation model[J]. The Administration and Technique, 30(1): 27-30. | |
[57] | 吴林川, 王冬梅, 任远, 等, 2018. 漓江水陆交错带4种草本覆盖对地表径流氮素的消减作用[J]. 林业科学, 54(5): 168-176. |
WU L C, WANG D M, REN Y, et al., 2018. Effects of four herbaceous plants coverage on reducing surface runoff nitrogen in Lijiang River aquatic-terrestrial ecotone[J]. Scientia Silvae Sinicae, 54(5): 168-176. | |
[58] | 杨丽雅, 夏源, 2017. 漓江支流小流域的非点源污染分析及削减策略[J]. 桂林理工大学学报, 37(1): 177-181. |
YANG L Y, XIA Y, 2017. Analysis and reduction strategies of non-point source pollution in small watershed of Lijiang tributaries[J]. Journal of Guilin University of Technology, 37(1): 177-181. | |
[59] | 杨丽雅, 夏源, 蔡雪峰, 等, 2015. 简化SWAT模型模拟漓江支流小流域的适用性评价[J]. 水资源与水工程学报, 26(6): 101-104. |
YANG L Y, XIA Y, CAI X F, et al., 2015. Applicability evaluation of simulating small watershed of tributary in Lijiang River by simplified SWAT model[J]. Journal of Water Resources & Water Engineering, 26(6): 101-104. | |
[60] | 庾樟娣, 1989. 漓江的细菌污染监测评价与保护意见[J]. 水资源保护 (4): 44-47, 43. |
YU Z D, 1989. Monitoring, Evaluation and protection opinions of bacterial pollution in Lijiang River[J]. Water Resources Protection (4): 44-47, 43. | |
[61] | 喻泽斌, 王敦球, 2003. 漓江水环境质量现状评价[J]. 桂林工学院学报, 23(1): 68-71. |
YU Z B, WANG D Q, 2003. Evaluation of Lijiang water[J]. Journal of Guilin Institute of Technology, 23(1): 68-71. | |
[62] | 张杰, 蔡德所, 曹艳霞, 等, 2011. 评价漓江健康的RIVPACS预测模型研究[J]. 湖泊科学, 23(1): 73-79. |
ZHANG J, CAI D S, CAO Y X, et al., 2011. Health assessment based on a RIVPACS-type predictive model in Lijiang River[J]. Journal of Lake Sciences, 23(1): 73-79.
DOI URL |
|
[63] | 张学洪, 王敦球, 解庆林, 等, 2000. 漓江风景区环境现状及变化趋势研究[J]. 云南环境科学, (S1): 257-258, 267. |
ZHANG X H, WANG D Q, XIE Q L, et al., 2000. Environment and its change trend of Lijiang scenic spot in Guilin[J]. Yunnan Environmental Science, (S1): 257-258, 267. | |
[64] | 赵赞, 李丰生, 2007. 生态旅游环境承载力评价研究--以桂林漓江为例[J]. 安徽农业科学, 35(8): 2380-2383, 2385. |
ZHAO Z, LI F S, 2007. Study on ecotourism environmental carrying capacity of Lijiang River[J]. Journal of Anhui Agricultural Sciences, 35(8): 2380-2383, 2385. | |
[65] | 周玲, 张丽, 许君一, 等, 2015. 基于SEBAL模型的漓江流域蒸散量变化分析[J]. 水土保持研究, 22(4): 332-337. |
ZHOU L, ZHANG L, XU J Y, et al., 2015. Analysis of the variations of evapotranspiration in Lijiang River basin based on SEBAL model[J]. Research of Soil and Water Conservation, 22(4): 332-337. | |
[66] | 周振明, 陈朝述, 刘可慧, 等, 2014. 漓江桂林市区段夏季浮游植物群落特征与水质评价[J]. 生态环境学报, 23(4): 649-656. |
ZHOU Z M, CHEN C S, LIU K H, et al., 2014. Phytoplankton community and water quality in Guilin city section of Lijiang River in summer, China[J]. Ecology and Environmental Sciences, 23(4): 649-656. | |
[67] | 朱瑜, 蔡德所, 周解, 等, 2012. 漓江流域鱼类区系组成分析[J]. 广西师范大学学报: 自然科学版, 30(4): 136-145. |
ZHU Y, CAI D S, ZHOU J, et al., 2012. Ichthyologic fauna of Lijiang River, Guilin, China[J]. Journal of Guangxi Normal University: Natural Science Edition, 30(4): 136-145. | |
[68] | 朱瑜, 蔡德所, 周解, 等, 2012. 应用鱼类完整性指数评价漓江水生态环境健康状况[J]. 广西师范大学学报: 自然科学版, 30(4): 130-135. |
ZHU Y, CAI D S, ZHOU J, et al., 2012. Assessment of ecosystem health of Lijiang River using fish-index of biotic integrity[J]. Journal of Guangxi Normal University: Natural Science Edition, 30(4): 130-135. |
[1] | SUN Xiaojie, ZOU Yi, GUO Chenhui. Bibliometric Analysis of the Relationships between Plants and Insects Research Based on the Literature of CNKI [J]. Ecology and Environment, 2022, 31(1): 196-204. |
[2] | LIU Qiang, YANG Zhongyang, CHEN Yiqing, LEI Jinrui, CHEN Zongzhu, CHEN Xiaohua. Multi-scenario Simulation of Land Use Change and Its Eco-environmental Effect in Hainan Island Based on CA-Markov Model [J]. Ecology and Environment, 2021, 30(7): 1522-1531. |
[3] | ZHANG Xiaojin, DAI Zhengwei, DAI Yu, DAI Guofei, YANG Ping, FANG Yuanyuan, PENG Ningyan. Research Progress on the Methods of Simultaneous Algae Control and Microcystin Removal [J]. Ecology and Environment, 2021, 30(7): 1549-1554. |
[4] | LI Tao, MENG Dandan, GUO Shuiliang, YUAN Guohui, QIAN Zhenguan, LV Weiguang. Acute Toxicity of Seventeen Herbicides Commonly Used to Earthworm (Eisenia fetida) [J]. Ecology and Environment, 2021, 30(6): 1269-1275. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn