Ecology and Environment ›› 2021, Vol. 30 ›› Issue (12): 2402-2410.DOI: 10.16258/j.cnki.1674-5906.2021.12.016
• Research Articles • Previous Articles Next Articles
SONG Yueyan1,2,3(), YUAN Zaijian2,3, HUANG Bin2,3,*(
), XIE Zhenyue2,3, LIU Yongjie1
Received:
2021-08-10
Online:
2021-12-18
Published:
2022-01-04
Contact:
HUANG Bin
宋玥言1,2,3(), 袁再健2,3, 黄斌2,3,*(
), 谢真越2,3, 刘永杰1
通讯作者:
黄斌
作者简介:
宋玥言(1997年生),女,硕士研究生,主要从事土壤重金属污染与农业面源污染方面的研究。E-mail: 1071782063@qq.com
基金资助:
CLC Number:
SONG Yueyan, YUAN Zaijian, HUANG Bin, XIE Zhenyue, LIU Yongjie. Studies on the Influence of Biochar on the Adsorption of Cd onto Red Soil Aggregates[J]. Ecology and Environment, 2021, 30(12): 2402-2410.
宋玥言, 袁再健, 黄斌, 谢真越, 刘永杰. 生物炭对红壤团聚体吸附Cd的影响研究[J]. 生态环境学报, 2021, 30(12): 2402-2410.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.12.016
处理 Treatment | 土壤粒径 Particle size/ mm | pH | 有机质质量分数 w(soil organic matter)/ (g∙kg-1) | 比表面积 Specific surface area/ (m2∙kg-1) | 阳离子交换量 Cation Exchange Capacity/ (cmol∙kg-1) | 游离氧化铁质量分数 w(free iron oxide)/ (g∙kg-1) |
---|---|---|---|---|---|---|
0%原土质量比例生物炭 0% biochar addition | 原土 | 4.86 | 6.79 | 293.5 | 9.99 | 12.64 |
>1 | 4.68 | 3.82 | 355.6 | 8.73 | 9.37 | |
1-0.25 | 4.87 | 8.94 | 339.6 | 7.99 | 8.12 | |
0.25-0.05 | 4.95 | 6.12 | 383.7 | 8.34 | 10.75 | |
<0.05 | 5.08 | 9.50 | 450.8 | 14.17 | 16.86 | |
3%原土质量比例生物炭 3% biochar addition | 原土 | 5.09 | 14.52 | 339.9 | 12.40 | 14.27 |
>1 | 5.25 | 11.17 | 376.9 | 9.86 | 10.71 | |
1-0.25 | 5.31 | 14.57 | 344.7 | 8.49 | 10.52 | |
0.25-0.05 | 5.20 | 16.75 | 439.1 | 9.03 | 14.35 | |
<0.05 | 5.19 | 18.98 | 473.5 | 14.36 | 17.11 |
Table 1 Basic properties of bulk soil and aggregates of different particle-size fractions
处理 Treatment | 土壤粒径 Particle size/ mm | pH | 有机质质量分数 w(soil organic matter)/ (g∙kg-1) | 比表面积 Specific surface area/ (m2∙kg-1) | 阳离子交换量 Cation Exchange Capacity/ (cmol∙kg-1) | 游离氧化铁质量分数 w(free iron oxide)/ (g∙kg-1) |
---|---|---|---|---|---|---|
0%原土质量比例生物炭 0% biochar addition | 原土 | 4.86 | 6.79 | 293.5 | 9.99 | 12.64 |
>1 | 4.68 | 3.82 | 355.6 | 8.73 | 9.37 | |
1-0.25 | 4.87 | 8.94 | 339.6 | 7.99 | 8.12 | |
0.25-0.05 | 4.95 | 6.12 | 383.7 | 8.34 | 10.75 | |
<0.05 | 5.08 | 9.50 | 450.8 | 14.17 | 16.86 | |
3%原土质量比例生物炭 3% biochar addition | 原土 | 5.09 | 14.52 | 339.9 | 12.40 | 14.27 |
>1 | 5.25 | 11.17 | 376.9 | 9.86 | 10.71 | |
1-0.25 | 5.31 | 14.57 | 344.7 | 8.49 | 10.52 | |
0.25-0.05 | 5.20 | 16.75 | 439.1 | 9.03 | 14.35 | |
<0.05 | 5.19 | 18.98 | 473.5 | 14.36 | 17.11 |
Fig.1 SEM images of bulk soil (a) and bulk soil, >1 mm (c), 1-0.25 mm (d), 0.25-0.05 mm (e)and<0.05 mm (f) aggregates amended with 3% biochar of original soil
Fig. 3 Influence of biochar addition amount on Cd adsorption in soil T-0, T-1, T-3, T-5 and T-7 were biochar with 0, 1%, 3%, 5% and 7% of the original soil, respectively
生物炭比例 Biochar addition/ % | Langmuir方程 Langmuir equation | Freundlich方程 Freundlichr equation | |||||
---|---|---|---|---|---|---|---|
KL/ (L∙mg-1) | qm/ (mg∙kg-1) | R2 | KF/ (L∙kg-1) | n-1 | R2 | ||
0 | 0.003 | 1956.417 | 0.964 | 448.217 | 0.457 | 0.981 | |
1 | 0.013 | 3065.906 | 0.964 | 537.654 | 0.323 | 0.948 | |
3 | 0.019 | 3454.713 | 0.958 | 636.806 | 0.304 | 0.930 | |
5 | 0.018 | 3495.683 | 0.960 | 921.814 | 0.278 | 0.923 | |
7 | 0.018 | 3644.487 | 0.974 | 846.603 | 0.211 | 0.949 |
Table 2 Langmuir and Freundlich model fitting results for the adsorption results of Cd in red soil amended with biochar of different proportions
生物炭比例 Biochar addition/ % | Langmuir方程 Langmuir equation | Freundlich方程 Freundlichr equation | |||||
---|---|---|---|---|---|---|---|
KL/ (L∙mg-1) | qm/ (mg∙kg-1) | R2 | KF/ (L∙kg-1) | n-1 | R2 | ||
0 | 0.003 | 1956.417 | 0.964 | 448.217 | 0.457 | 0.981 | |
1 | 0.013 | 3065.906 | 0.964 | 537.654 | 0.323 | 0.948 | |
3 | 0.019 | 3454.713 | 0.958 | 636.806 | 0.304 | 0.930 | |
5 | 0.018 | 3495.683 | 0.960 | 921.814 | 0.278 | 0.923 | |
7 | 0.018 | 3644.487 | 0.974 | 846.603 | 0.211 | 0.949 |
粒径 Particle size/mm | Langmuir方程 Langmuir equation | Freundlich方程 Freundlich equation | ||||||
---|---|---|---|---|---|---|---|---|
KL/(L∙mg-1) | qm/(mg∙kg-1) | R2 | KF/(L∙kg-1) | n-1 | R2 | |||
0%原土质量比例生物炭 0% biochar addition | >1 | 0.153 | 1956.895 | 0.995 | 202.038 | 0.059 | 0.986 | |
1-0.25 | 0.118 | 2058.161 | 0.996 | 184.337 | 0.085 | 0.989 | ||
0.25-0.05 | 0.108 | 2212.626 | 0.996 | 193.101 | 0.085 | 0.991 | ||
<0.05 | 0.127 | 2288.936 | 0.995 | 187.057 | 0.089 | 0.990 | ||
3%原土质量比例生物炭 3% biochar addition | >1 | 0.134 | 2797.148 | 0.994 | 242.589 | 0.086 | 0.993 | |
1-0.25 | 0.121 | 2799.889 | 0.995 | 245.523 | 0.101 | 0.989 | ||
0.25-0.05 | 0.112 | 2839.222 | 0.996 | 207.824 | 0.083 | 0.992 | ||
<0.05 | 0.201 | 3175.737 | 0.980 | 281.723 | 0.106 | 0.983 |
Table 3 Langmuir and Freundlich model fitting results for the adsorption results of Cd in different soil particles amended with 0% and 3% biochar
粒径 Particle size/mm | Langmuir方程 Langmuir equation | Freundlich方程 Freundlich equation | ||||||
---|---|---|---|---|---|---|---|---|
KL/(L∙mg-1) | qm/(mg∙kg-1) | R2 | KF/(L∙kg-1) | n-1 | R2 | |||
0%原土质量比例生物炭 0% biochar addition | >1 | 0.153 | 1956.895 | 0.995 | 202.038 | 0.059 | 0.986 | |
1-0.25 | 0.118 | 2058.161 | 0.996 | 184.337 | 0.085 | 0.989 | ||
0.25-0.05 | 0.108 | 2212.626 | 0.996 | 193.101 | 0.085 | 0.991 | ||
<0.05 | 0.127 | 2288.936 | 0.995 | 187.057 | 0.089 | 0.990 | ||
3%原土质量比例生物炭 3% biochar addition | >1 | 0.134 | 2797.148 | 0.994 | 242.589 | 0.086 | 0.993 | |
1-0.25 | 0.121 | 2799.889 | 0.995 | 245.523 | 0.101 | 0.989 | ||
0.25-0.05 | 0.112 | 2839.222 | 0.996 | 207.824 | 0.083 | 0.992 | ||
<0.05 | 0.201 | 3175.737 | 0.980 | 281.723 | 0.106 | 0.983 |
[1] | ABDU N, MOHAMMED I, 2016. Adsorption-solubility equilibria and speciation of Pb, Cd, and Zn in a savanna soil[J]. Spanish Journal of Soilence, 6: 244-260. |
[2] |
AJMONE-MARSAN F, BIASIOLI M, KRALJ T, et al., 2008. Metals in particle-size fractions of the soils of five European cities[J]. Environmental Pollution, 152(1): 73-81.
DOI URL |
[3] |
BEGUERÍA S, ANGULO-MARTÍNEZ M, GASPAR L, 2015. Detachment of soil organic carbon by rainfall splash: Experimental assessment on three agricultural soils of Spain[J]. Geoderma, 245-246: 21-30.
DOI URL |
[4] |
BRONICK C J, LAL R, 2005. Soil structure and management: a review[J]. Geoderma, 124(1-2): 3-22.
DOI URL |
[5] |
CHEN X, CHEN G, CHEN L, et al., 2011. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution[J]. Bioresource Technology, 102(19): 8877-8884.
DOI URL |
[6] |
EMMA M, 2006. Putting the carbon back: black is the new green[J]. Nature, 442(7103): 624-626.
DOI URL |
[7] |
GILES CH, SMITH D, HUITSON A, et al., 1974. A general treatment and classification of the solute adsorption isotherm. I. Theoretical[J]. Journal of Colloid and Interface Science, 47(3): 755-765.
DOI URL |
[8] |
GONG C, MA L, CHENG H, et al., 2014. Characterization of the particle size fraction associated heavy metals in tropical arable soils from Hainan Island, China[J]. Journal of Geochemical Exploration, 139: 109-114.
DOI URL |
[9] |
GUPTA A, MUMTAZ S, LI C H, et al., 2019. Combatting antibiotic- resistant bacteria using nanomaterials[J]. Chemical Society Reviews, 48(2): 415-427.
DOI URL |
[10] |
HAYNES R J, NAIDU R, 1998. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review[J]. Nutrient Cycling in Agroecosystems, 51(2): 123-137.
DOI URL |
[11] |
HUANG B, YUAN Z J, LI D Q, et al., 2019. Loss characteristics of Cd in soil aggregates under simulated rainfall conditions[J]. Science of the Total Environment, 650(Pt 1): 313-320.
DOI URL |
[12] | HUANG B, LI Z W, 2015. Aging effect on the leaching behavior of heavy metals (Cu, Zn, and Cd) in red paddy soil[J]. Environmental Science & Pollution Research, 22(15): 11467-11477. |
[13] |
LI J R, XU Y M, 2017. Immobilization remediation of Cd-polluted soil with different water condition[J]. Journal of Environmental Management, 193(15): 607-612.
DOI URL |
[14] | LIANG A Z, YANG X M, ZHANG X P, et al., 2009. Soil organic carbon changes in particle-size fractions following cultivation of Black soils in China[J]. Soil & Tillage Research, 105(1): 21-26. |
[15] | NELSON D W, 1996. Total carbon, organic carbon, and organic matter[J]. Methods of Soil Analysis, 9: 961-1010. |
[16] |
RAO M M, RAO G, SESHAIAH K. et al., 2008. Activated carbon from Ceiba pentandra hulls, an agricultural waste, as an adsorbent in the removal of lead and zinc from aqueous solutions[J]. Waste Management, 28(5): 849-858.
DOI URL |
[17] |
SARKAR D, DE D K, DAS R, et al., 2014. Removal of organic matter and oxides of iron and manganese from soil influences boron adsorption in soil[J]. Geoderma, 214-215: 213-216.
DOI URL |
[18] | TRAKAL L, M KOMÁREK, J SZÁKOVÁ, et al., 2011. Biochar application to metal-contaminated soil: Evaluating of Cd, Cu, Pb and Zn sorption behavior using single- and multi-element sorption experiment[J]. Plant Soil & Environment, 57(8): 372-380. |
[19] |
WANG Y, TANG X W, CHEN Y M, et al., 2009. Adsorption behavior and mechanism of Cd(II) on loess soil from China [J]. Journal of Hazardous Materials, 172(1): 30-37.
DOI URL |
[20] | 白庆中, 宋燕光, 王晖, 等, 2000. 有机物对重金属在粘土中吸附行为的影响[J]. 环境科学, 21(5): 64-67. |
BAI Q Z, SONG Y G, WANG H, et al., 2000. Effect of organic acids on heavy metal migration in clay[J]. Environmental Science, 21(5): 64-67.
DOI URL |
|
[21] | 鲍士旦, 2000. 土壤农化分析[M]. 北京: 中国农业出版社. |
BAO S D, 2000. Soil and agricultural chemistry analysis[M]. Beijing: China Agriculture Press. | |
[22] | 陈晶中, 陈杰, 谢学俭, 等, 2003. 土壤污染及其环境效应[J]. 土壤, 35(4): 298-303. |
CHEN J Z, CHEN J, XIE X J, et al., 2003. Soil pollution and its environmental Impact[J]. Soils, 35(4): 298-303. | |
[23] | 陈再明, 陈宝梁, 周丹丹, 等, 2013. 水稻秸秆生物碳的结构特征及其对有机污染物的吸附性能[J]. 环境科学学报, 33(1): 9-19. |
CHEN Z M, CHEN B L, ZHOU D D, et al., 2013. Composition and sorption properties of rice-straw derived biochars[J]. Acta Scientiae Circumstantiae, 33(01): 9-19. | |
[24] | 陈能场, 郑煜基, 何晓峰, 等, 2017. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 36(9): 1689-1692. |
CHEN N C, ZHENG Y J, HE X F, et al., 2017. Analysis of the Report on the national general survey of soil contamination[J]. Journal of Agro-Environment Science, 36(9): 1689-1692. | |
[25] | 洪舒蔓, 夏建国, 张世熔, 等, 2010. 名山河流域水稻土组分对微团聚体吸附-解吸铜的影响[J]. 环境科学学报, 30(3): 578-586. |
HONG S M, XIA J G, ZHANG S R, et al., 2010. Effect of paddy soil components on adsorption and desorption of copper bymicroaggregates in paddy soil from the Mingshan watershed[J]. Acta Scientiae Circumstantiae, 30(3): 578-586. | |
[26] | 李江舟, 代快, 张立猛, 等, 2016. 施用生物炭对云南烟区红壤团聚体组成及有机碳分布的影响[J]. 环境科学学报, 36(6): 2114-2120. |
LI J Z, DAI K, ZHANG L M, et al., 2016. Effects of biochar application on soil organic carbon distribution and soilaggregate composition of red soils in Yunnan tobacco planting area[J]. Acta Scientiae Circumstantiae, 36(6): 2114-2120. | |
[27] | 李力, 陆宇超, 刘娅, 等, 2012. 玉米秸秆生物炭对Cd(Ⅱ)的吸附机理研究[J]. 农业环境科学学报, 31(11): 2277-2283. |
LI L, LU Y C, LIU Y, et al., 2012. Adsorption Mechanisms of Cadmium(Ⅱ) on Biochars Derived from Corn Straw[J]. Journal of Agro-Environment Science, 31(11): 2277-2283. | |
[28] | 刘莹莹, 秦海芝, 李恋卿, 等, 2012. 不同作物原料热裂解生物质炭对溶液中Cd2+和Pb2+的吸附特性[J]. 生态环境学报, 21(1): 146-152. |
LIU Y Y, QIN H Z, LI L Q, et al., 2012. Adsorption of Cd2+ and Pb2+ in aqueous solution by biochars produced from the pyrolysis of different crop feedstock[J]. Ecology and Environmental Sciences, 21(1): 146-152. | |
[29] | 孟祥天, 蒋瑀霁, 王晓玥, 等, 2018. 生物质炭和秸秆长期还田对红壤团聚体和有机碳的影响[J]. 土壤, 50(2): 326-332. |
MENG X T, JIANG Y J, WANG X Y, et al., 2018. Effects of long-term application of biochar and straws on red soil aggregate compostion and organic carbon distribution[J]. Soils, 50(2): 326-332. | |
[30] | 尚杰, 耿增超, 赵军, 等, 2015. 生物炭对塿土水热特性及团聚体稳定性的影响[J]. 应用生态学报, 26(7): 1969-1976. |
SHANG J, GENG Z C, ZHAO J, et al., 2015. Effects of biochar on water thermal properties and aggregate stability of Lou soil[J]. Chinese Journal of Applied Ecology, 26(7): 1969-1976. | |
[31] | 王冰, 赵闪闪, 秦治家, 等, 2016. 生物质炭对黑土吸附-解吸硝态氮性能的影响[J]. 农业环境科学学报, 35(1): 115-121. |
WANG B, ZHAO S S, QIN Z J, et al., 2016. Effect of biochar on adsorption-desorption characteristics of nitrate nitrogen in black soil[J]. Journal of Agro-Environment Science, 35(1): 115-121. | |
[32] | 王芳, 2008. 水稻土团聚体颗粒组对外源污染物(镉、铜和菲)的吸附-解吸特性研究[D]. 南京: 南京农业大学. |
WANG F, 2008. Sorption-desorption of cadmium,copper and phenanthrene by size fractions of microaggregates from paddy soils[D]. Nanjing: Nanjing Agricultural University. | |
[33] | 王亚琼, 2019. 生物炭对土壤团聚体和钾素的影响[D]. 杨凌: 中国科学院大学 (中国科学院教育部水土保持与生态环境研究中心). |
WANG Y Q, 2019. Effect of biochar on soil aggregate and potssium[D]. Yangling: Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education. | |
[34] | 武玉, 徐刚, 吕迎春, 等, 2014. 生物炭对土壤理化性质影响的研究进展[J]. 地球科学进展, 29(1): 68-79. |
WU Y, XU G, LV Y C, et al., 2014. Effects of Biochar Amendment on Soil Physical and Chemical Properties: Current Status and Knowledge Gaps[J]. Advances in Earth Science, 29(1): 68-79. | |
[35] | 许海波, 赵道远, 刘培亚, 等, 2013. 磷酸盐对水稻土团聚体不同类型重金属镉、铬(Ⅵ)吸附的影响[J]. 生态环境学报, 22(5): 857-862. |
XU H B, ZHAO D Y, LIU P Y, et al., 2013. Effect of phosphate on the kinetic of the adsorption of different types of heavy metal: Cadmium and chromium by aggregates in paddy soil[J]. Ecology and Environmental Sciences, 22(05): 857-862. | |
[36] | 周涵君, 韩秋静, 马静, 等, 2019. 生物炭对红壤和褐土中镉形态的影响[J]. 植物营养与肥料学报, 25(3): 433-442. |
ZHOU H J, HAN Q J, MA J, et al., 2019. Effects of biochar on Cd forms in red soil and cinnamon soil[J]. Journal of Plant Nutrition and Fertilizers, 25(3): 433-442. |
[1] | HU Qirui, JI Chunrong, LI Yingchun, WANG Xuejiao, YANG Mingfeng, GUO Yanyun. Effects of Drought Stress on Photosynthetic Characteristics and Yield of Cotton at Bud Stage under Mulched Drip Irrigation [J]. Ecology and Environment, 2023, 32(6): 1045-1052. |
[2] | LI Haipeng, HUANG Yuehua, SUN Xiaodong, CAO Qimin, FU Fangxing, SUN Chuhan. Correlation Analysis of the Occurrence of the Tomato Bacterial Wilt and Different Types of Texture of Latosols and Its Bacterial Community in Cropland in Hainan [J]. Ecology and Environment, 2023, 32(6): 1062-1069. |
[3] | ZHENG Qingzhou, HE Jun, LI Shenzhi, DENG Chengzhi, WU Zhipeng, HUANG Xiaolin, WU Xia. Analysis on the Differences and Influencing Factors of Human Comfort between Urban and Rural Areas in Chongqing [J]. Ecology and Environment, 2023, 32(6): 1089-1097. |
[4] | WANG Jing, MENG Ke, CHEN Xuan, ZHANG Jiaen, XIANG Huimin, ZHONG Jiawen, SHI Zhaoji. Effects of Acid Rain on Yield, Quality and Physiological Characteristics of Lettuce and Brassica chinensis L. [J]. Ecology and Environment, 2023, 32(6): 1098-1107. |
[5] | WANG Jiayi, SUN Tingting, SHA Runyu, CHEN Tinghong, XING Ran, QIN Boqiang, SHI Wenqing. Study on the Synergic Effect of Algae Salvage on Pollution Control and Carbon Emission Reduction in Eutrophic Lakes [J]. Ecology and Environment, 2023, 32(6): 1108-1114. |
[6] | DU Dandan, GAO Ruizhong, FANG Lijing, XIE Longmei. Spatial Variation of Soil Heavy Metals and Their Responses to Physicochemical Factors of Salt Lake Basin in Arid Area [J]. Ecology and Environment, 2023, 32(6): 1123-1132. |
[7] | LI Chuanfu, ZHU Taochuan, MING Yufei, YANG Yuxuan, GAO Shu, DONG Zhi, LI Yongqiang, JIAO Shuying. Effect of Organic Fertilizer and Desulphurized Gypsum on Soil Aggregates and Organic Carbon and Its Fractions Contents in the Saline-alkali Soil of the Yellow River Delta [J]. Ecology and Environment, 2023, 32(5): 878-888. |
[8] | WANG Chao, YANG Qiannan, ZHANG Chi, LIU Tongxu, ZHANG Xialong, CHEN Jing, LIU Kexue. The Characteristics of Soil Phosphorus Fractions and Their Availability under Different Land Use Types in Danxia Mountain [J]. Ecology and Environment, 2023, 32(5): 889-897. |
[9] | ZHOU Qinyuan, DONG Quanmin, Wang Fangcao, LIU Yuzhen, FENG Bin, YANG Xiaoxia, YU Yang, ZHANG Chunping, CAO Quan, LIU Wenting. Effects of Mixed Grazing on Aggregates and Organic Carbon in Rhizosphere Soil of Stellera chamaejasme in Alpine Grassland [J]. Ecology and Environment, 2023, 32(4): 660-667. |
[10] | PAN Yuling, QU Xiangning, LI Qing, WANG Lei, WANG Xiaoping, TAN Peng, CUI Geng, AN Yu, TONG Shouzheng. Spatial Distribution Characteristics of Soil Physicochemical Factors and Their Response to Microtopography in a Typical Beach Wetland of the Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(4): 668-677. |
[11] | ZHAO Weibin, TANG Li, WANG Song, LIU Lingling, WANG Shufeng, XIAO Jiang, CHEN Guangcai. Improvement Effect of Two Biochars on Coastal Saline-Alkaline Soil [J]. Ecology and Environment, 2023, 32(4): 678-686. |
[12] | WANG Tiezheng, QU Xinyue, LIU Chunxiang, LI Youzhi. Spatial and Temporal Changes in Water Quality in the Dongjiang Lake and Their Relationships with Land Use in the Watershed [J]. Ecology and Environment, 2023, 32(4): 722-732. |
[13] | WANG Xinyu, GAO Dengzhou, LIU Bolin, WANG Bin, ZHENG Yanling, LI Xiaofei, HOU Lijun. The Tidal-cycle Variation and Influencing Factors of Dark Carbon Fixation Process in the Yangtze Estuary [J]. Ecology and Environment, 2023, 32(4): 733-743. |
[14] | HU Fang, LIU Jutao, WEN Chunyun, HAN Liu, WEN Hui. Phytoplankton Community Structure and Evaluation of Aquatic Ecological Conditions in Fu River Basin [J]. Ecology and Environment, 2023, 32(4): 744-755. |
[15] | YU Fei, ZENG Hailong, FANG Huaiyang, FU Lingfang, LIN Shu, DONG Jiahao. Spatio-temporal Variation Characteristics of Phytoplankton Functional Groups and Water Quality Evaluation in the Typical Tidal River Network [J]. Ecology and Environment, 2023, 32(4): 756-765. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn