Ecology and Environment ›› 2021, Vol. 30 ›› Issue (10): 2054-2066.DOI: 10.16258/j.cnki.1674-5906.2021.10.012
• Research Articles • Previous Articles Next Articles
ZHANG Wei1,2(), WANG Kaili1, LIANG Sheng1, DU Xinyu1, LIU Luyun1, CHEN Cunyou1,*(
), HU Xijun1
Received:
2021-06-11
Online:
2021-10-18
Published:
2021-12-21
Contact:
CHEN Cunyou
张伟1,2(), 王凯丽1, 梁胜1, 杜心宇1, 刘路云1, 陈存友1,*(
), 胡希军1
通讯作者:
陈存友
作者简介:
张伟(1995年生),男,硕士研究生,研究方向为风景园林规划与设计。E-mail: 1137726130@qq.com
基金资助:
CLC Number:
ZHANG Wei, WANG Kaili, LIANG Sheng, DU Xinyu, LIU Luyun, CHEN Cunyou, HU Xijun. Research on the “Cold Island Effect” and Scenario Simulation of Lakes in Urban Suburbs Based on Computational Force Fluid Dynamics: Taking Tongsheng Lake in Changsha City as An Example[J]. Ecology and Environment, 2021, 30(10): 2054-2066.
张伟, 王凯丽, 梁胜, 杜心宇, 刘路云, 陈存友, 胡希军. 基于计算力流体力学的城市近郊湖泊“冷岛效应”及其情景模拟研究——以长沙市同升湖为例[J]. 生态环境学报, 2021, 30(10): 2054-2066.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.10.012
样方编号Sample number | 距离 Distance/ m | 建筑布局 Construction layout | 建筑高度分类 Building height classification | 建筑平均高度Average building height | 绿化覆盖面积占比Percentage of green coverage area | 不透水面面积占比Percentage of impervious surface area | 乔灌草比例Joe shrub grass ratio |
---|---|---|---|---|---|---|---|
1 | 0 | 围合式 Enclosed | 多层 Multi-layer | 12.8 | 0.69 | 0.31 | 0.6 |
2 | 150 | 点状分布 Point distribution | 低层 Lower level | 6 | 0.54 | 0.46 | 0.8 |
3 | 300 | 点状分布 Point distribution | 低层 Lower level | 6 | 0.4 | 0.6 | 1.2 |
4 | 450 | 点状分布 Point distribution | 低层 Lower level | 6 | 0.5 | 0.5 | 1 |
5 | 600 | 点状分布 Point distribution | 低层 Lower level | 6 | 0.3 | 0.3 | 1.5 |
6 | 0 | 0.6 | 0.4 | 1.8 | |||
7 | 150 | 点状分布 Point distribution | 低层 Lower level | 6 | 0.5 | 0.5 | 2 |
8 | 300 | 点状分布 Point distribution | 低层 Lower level | 6 | 0.2 | 0.8 | 1 |
9 | 450 | 点状分布 Point distribution | 低层 Lower level | 6 | 0.35 | 0.65 | 1.5 |
10 | 600 | 0.22 | 0.22 | 0.8 | |||
11 | 0 | 行列式 Determinant | 低层 Lower level | 12.8 | 0.7 | 0.3 | 3 |
12 | 150 | 行列式 Determinant | 中高层 Middle and high level | 23.8 | 0.5 | 0.5 | 1.8 |
13 | 300 | 行列式 Determinant | 中高层 Middle and high level | 23.8 | 0.42 | 0.58 | 1 |
14 | 450 | 行列式 Determinant | 高层 High-level | 36 | 0.26 | 0.74 | 0.6 |
15 | 600 | 行列式 Determinant | 高层 High-level | 36 | 0.2 | 0.8 | 0.5 |
16 | 2000 | 行列式 Determinant | 高层 High-level | 36 | 0.1 | 0.9 | 1 |
17 | 2000 | 行列式 Determinant | 高层 High-level | 36 | 0.1 | 0.9 | 1 |
18 | 2000 | 行列式 Determinant | 高层 High-level | 36 | 0.1 | 0.9 | 1 |
Table 1 Environmental parameter variable statistics of sample square
样方编号Sample number | 距离 Distance/ m | 建筑布局 Construction layout | 建筑高度分类 Building height classification | 建筑平均高度Average building height | 绿化覆盖面积占比Percentage of green coverage area | 不透水面面积占比Percentage of impervious surface area | 乔灌草比例Joe shrub grass ratio |
---|---|---|---|---|---|---|---|
1 | 0 | 围合式 Enclosed | 多层 Multi-layer | 12.8 | 0.69 | 0.31 | 0.6 |
2 | 150 | 点状分布 Point distribution | 低层 Lower level | 6 | 0.54 | 0.46 | 0.8 |
3 | 300 | 点状分布 Point distribution | 低层 Lower level | 6 | 0.4 | 0.6 | 1.2 |
4 | 450 | 点状分布 Point distribution | 低层 Lower level | 6 | 0.5 | 0.5 | 1 |
5 | 600 | 点状分布 Point distribution | 低层 Lower level | 6 | 0.3 | 0.3 | 1.5 |
6 | 0 | 0.6 | 0.4 | 1.8 | |||
7 | 150 | 点状分布 Point distribution | 低层 Lower level | 6 | 0.5 | 0.5 | 2 |
8 | 300 | 点状分布 Point distribution | 低层 Lower level | 6 | 0.2 | 0.8 | 1 |
9 | 450 | 点状分布 Point distribution | 低层 Lower level | 6 | 0.35 | 0.65 | 1.5 |
10 | 600 | 0.22 | 0.22 | 0.8 | |||
11 | 0 | 行列式 Determinant | 低层 Lower level | 12.8 | 0.7 | 0.3 | 3 |
12 | 150 | 行列式 Determinant | 中高层 Middle and high level | 23.8 | 0.5 | 0.5 | 1.8 |
13 | 300 | 行列式 Determinant | 中高层 Middle and high level | 23.8 | 0.42 | 0.58 | 1 |
14 | 450 | 行列式 Determinant | 高层 High-level | 36 | 0.26 | 0.74 | 0.6 |
15 | 600 | 行列式 Determinant | 高层 High-level | 36 | 0.2 | 0.8 | 0.5 |
16 | 2000 | 行列式 Determinant | 高层 High-level | 36 | 0.1 | 0.9 | 1 |
17 | 2000 | 行列式 Determinant | 高层 High-level | 36 | 0.1 | 0.9 | 1 |
18 | 2000 | 行列式 Determinant | 高层 High-level | 36 | 0.1 | 0.9 | 1 |
季节 Season | 月份 Month | 时间 Time | ||
---|---|---|---|---|
夏季 Summer | 6 | 2019-06-20 | 2019-06-25 | 2019-06-26 |
7 | 2019-07-01 | 2019-07-02 | 2019-07-03 | |
8 | 2019-08-23 | 2019-08-24 | 2019-08-31 |
Table 2 Measuring time
季节 Season | 月份 Month | 时间 Time | ||
---|---|---|---|---|
夏季 Summer | 6 | 2019-06-20 | 2019-06-25 | 2019-06-26 |
7 | 2019-07-01 | 2019-07-02 | 2019-07-03 | |
8 | 2019-08-23 | 2019-08-24 | 2019-08-31 |
季节Season | 风向 Wind direction | 入口来流风速 Inlet wind speed/(m∙s-1) | 温度 Temperature/ ℃ | 相对湿度 Relative humidity/% | 气压 Air pressure/Pa |
---|---|---|---|---|---|
夏季Summer | 东南风 Southeast wind | 2 | 36 | 60 | 101325 |
Table 3 Inlet flow parameters
季节Season | 风向 Wind direction | 入口来流风速 Inlet wind speed/(m∙s-1) | 温度 Temperature/ ℃ | 相对湿度 Relative humidity/% | 气压 Air pressure/Pa |
---|---|---|---|---|---|
夏季Summer | 东南风 Southeast wind | 2 | 36 | 60 | 101325 |
温度 Temperature/℃ | 东南部区域 Southeast region | 西北部区域 Northwest region | 东北部区域 Northeast region | 西南部区域Southwest region | 湖泊中心区域 Lake center area |
---|---|---|---|---|---|
实际算例 Actual calculation example | 36.38-38.72 | 35.25-37.88 | 36.21-38.34 | 36.15-38.16 | 30.10-34.32 |
建筑高度增加10 m Building height increased by 10 m | 36.94-38.78 | 35.40-37.91 | 36.28-38.35 | 36.35-38.24 | 30.45-34.88 |
建筑高度增加20 m Building height increased by 20 m | 37.09-38.86 | 35.85-38.05 | 36.35-38.49 | 36.52-38.38 | 30.60-34.95 |
建筑间距增大2倍 Building spacing increased by 2 times | 36.26-38.49 | 34.97-37.62 | 36.08-38.08 | 35.88-37.75 | 29.65-34.09 |
Table 4 Changes in temperature when building height and building spacing are changed
温度 Temperature/℃ | 东南部区域 Southeast region | 西北部区域 Northwest region | 东北部区域 Northeast region | 西南部区域Southwest region | 湖泊中心区域 Lake center area |
---|---|---|---|---|---|
实际算例 Actual calculation example | 36.38-38.72 | 35.25-37.88 | 36.21-38.34 | 36.15-38.16 | 30.10-34.32 |
建筑高度增加10 m Building height increased by 10 m | 36.94-38.78 | 35.40-37.91 | 36.28-38.35 | 36.35-38.24 | 30.45-34.88 |
建筑高度增加20 m Building height increased by 20 m | 37.09-38.86 | 35.85-38.05 | 36.35-38.49 | 36.52-38.38 | 30.60-34.95 |
建筑间距增大2倍 Building spacing increased by 2 times | 36.26-38.49 | 34.97-37.62 | 36.08-38.08 | 35.88-37.75 | 29.65-34.09 |
[1] |
NAGARAJAN B, YAU M K, SCHUEPP P H, 2004. The effects of small water bodies on the atmospheric heat and water budgets over the MacKenzie River Basin[J]. Hydrological Processes, 18(5):913-938.
DOI URL |
[2] |
HAN D R, YANG X H, CAI H Y, et al., 2020. Impacts of Neighboring Buildings on the Cold Island Effect of Central Parks: A Case Study of Beijing, China[J]. Sustainability, 12(22):9499.
DOI URL |
[3] |
HATHWAY E A, SHARPLES S, 2012. The interaction of rivers and urban form in mitigating the Urban Heat Island effect: A UK case study[J]. Building and Environment, 58:14-22.
DOI URL |
[4] |
KATAYAMA T, HAYASHI T, SHIOTSUKI Y, et al., 1991. Cooling effects of a river and sea breeze on the thermal environment in a built-up area[J]. Energy and Buildings, 16(3-4):973-978.
DOI URL |
[5] |
MOLINA-AIZ F D, VALERA D L, ALVAREZ A J, et al., 2006. A wind tunnel study of airflow through horticultural crops: determination of the drag coefficient[J]. Biosystems Engineering, 93(4):447-457.
DOI URL |
[6] | PATANKAR S V, SPALDING D B, 1983. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows[M]// Numerical prediction of flow, heat transfer, turbulence and combustion. Pergamon: Elsevier: 54-73. |
[7] | 程雪玲, 胡非, 曾庆存, 2015. 复杂地形风场的精细数值模拟[J]. 气候与环境研究, 20(1):1-10. |
CHENG X L, HU F, ZENG Q C, 2015. Refined Numerical Simulation of Complex Terrain Flow Field[J]. Climatic and Environmental Research, 20(1):1-10. | |
[8] | 崔丽娟, 康晓明, 赵欣胜, 等, 2015. 北京典型城市湿地小气候效应时空变化特征[J]. 生态学杂志, 34(1):212-218. |
CUI L J, KANG X M, ZHAO X S, et al., 2015. Spatiotemporal variation in the microclimate effects of typical urban wetland in Beijing[J]. Chinese Journal of Ecology, 34(1):212-218. | |
[9] | 戴茜, 陈存友, 胡希军, 等, 2019. 建筑因子对城市湖泊温度效应的模拟研究——以湖南烈士公园湖泊为例[J]. 生态环境学报, 28(1):106-116. |
DAI Q, CHEN C Y, HU X J, et al., 2019. Simulation study on the effect of building factors on urban lake temperature: Take Hunan Martyrs Park Lake as an example[J]. Ecology and Environmental Sciences, 28(1):106-116. | |
[10] | 冯娴慧, 褚燕燕, 2017. 基于空气动力学模拟的城市绿地局地微气候效应研究[J]. 中国园林, 33(4):29-34. |
FENG X H, CHU Y Y, 2017. The Study of urban green space and local micro-climate effect based on air dynamics simulation[J]. Chinese Landscape Architecture, 33(4):29-34. | |
[11] | 纪鹏, 王昱丹, 朱春阳, 等, 2017. 夏季日间大庆市中小型湖泊和水库的温湿效应[J]. 湿地科学, 15(5):665-669. |
JI P, WANG Y D, ZHU C Y, et al., 2017. Effects of air temperature and relative humidity of small and medium-sized lakes and reservoir in Daqing city during daytime in summer[J]. Wetland Science, 15(5):665-669. | |
[12] | 姜平, 刘晓冉, 朱宇, 等, 2020. 基于大涡模拟的小区气候态精细化风环境模拟试验[J]. 气候与环境研究, 25(2):139-152. |
JIANG P, LIU X R, ZHU Y, et al., 2020. Fine-scale structures of the climatic wind environment within a neighborhood based on large-eddy simulation[J]. Climatic and Environmental Research, 25(2):139-152. | |
[13] | 梁胜, 陈存友, 胡希军, 等, 2020. 基于CFD的建筑对城市湖泊湿度效应的影响模拟[J]. 生态科学, 39(2):191-198. |
LIANG S, CHEN C Y, HU X J, et al., 2020. CFD simulating study on humidity effect of urban lakes influenced by buildings: a case study of Martyrs Park Lake in Hunan[J]. Ecological Science, 39(2):191-198. | |
[14] | 陆芊芊, 杨婷, 王自发, 等, 2020. 湿地小气候效应特征研究[J]. 气候与环境研究, 25(4):399-409. |
LU Q Q, YANG T, WANG Z F, et al., 2020. Characteristics of micro climate effects of wetlands[J]. Climatic and Environmental Research, 25(4):399-409. | |
[15] | 马宁, 王乃昂, 2016. 巴丹吉林沙漠腹地湖泊水面蒸发模拟的特殊性[J]. 干旱区研究, 33(6):1141-1149. |
MA N, WANG N A, 2016. On the simulation of evaporation from lake surface in the Hinterland of the Badain Jaran Desert[J]. Arid Zone Research, 33(6):1141-1149. | |
[16] |
宋晓程, 刘京, 余磊, 2016. Pedestrian environment prediction with different types of on-shore building distribution[J]. Journal of Central South University, 23(4):955-968.
DOI URL |
SONG X C, LIU J, YU L, 2016. Pedestrian environment prediction with different types of on-shore building distribution[J]. Journal of Central South University, 23(4):955-968. | |
[17] | 王煜东, 赵小艳, 徐向华, 等, 2016. 南京地区地表热通量的遥感反演分析[J]. 生态环境学报, 25(4):636-646. |
WANG Y D, ZHAO X Y, XU X H, et al., 2016. Analysis and Inversion on Surface Heat Flux with Remote Sensing in Nanjing Area[J]. Ecology and Environmental Sciences [J]. Ecology and Environmental Sciences, 25(4):636-646. | |
[18] | 文莉娟, 吕世华, 孟宪红, 等, 2008. 夏季绿洲气候效应的观测和数值模拟[J]. 气候与环境研究, 13(3):300-308. |
WEN L J, LU S H, MENG X H, et al., 2008. Observation and numerical simulation of microclimate of oasis in summer[J]. Climatic and Environmental Research, 13(3):300-308. | |
[19] | 杨朝斌, 张亭, 胡长涛, 等, 2021. 蓝绿空间冷岛效应时空变化及其影响因素——以苏州市为例[J]. 长江流域资源与环境, 30(3):677-688. |
YANG C B, ZHANG T, HU C T, et al., 2021. Spatial-temporal characteristics of the cooling island for blue: Green space and its driving factors in Suzhou, China[J]. Resources and Environment in the Yangtze Basin, 30(3):677-688. | |
[20] | 杨凯, 唐敏, 刘源, 等, 2004. 上海中心城区河流及水体周边小气候效应分析[J]. 华东师范大学学报(自然科学版) (3):105-114. |
YANG K, TANG M, LIU Y, et al., 2004. Analysis of microclimate effects around river and waterbody in Shanghai urban district[J]. Journal of East China Normal University (Natural Science) (3):105-114. | |
[21] | 尹杰, 詹庆明, 2019. 基于GIS和CFD的城市街道通风廊道研究——以武汉为例[J]. 中国园林, 35(6):84-88. |
YIN J, ZHAN Q M, 2019. Urban street wind path research based on GIS and CFD: A case study of Wuhan[J]. Chinese Landscape Architecture, 35(6):84-88. | |
[22] | 张棋斐, 文雅, 吴志峰, 等, 2018. 高密度建成区湖泊水体的热缓释效应及其季相差异——以广州市中心城区为例[J]. 生态环境学报, 27(7):1323-1334. |
ZHANG Q F, WEN Y, WU Z F, et al., 2018. Seasonal variations of the cooling effect of water landscape in high-density urban built-up area: A case study of the center urban district of Guangzhou[J]. Ecology and Environmental Sciences, 27(7):1323-1334. | |
[23] | 张伟, 陈存友, 胡希军, 等, 2021. 基于计算流体动力学 (CFD) 的湖泊因子对城市湖泊增湿效应的模拟研究: 以湖南烈士公园湖泊为例[J]. 生态与农村环境学报, 37(1):110-119. |
ZHANG W, CHEN C Y, HU X J, et al., 2021. Simulation study on the effect of lake factors on the humidification of urban lakes based on CFD: Take the Lake of Lieshi Park in Hunan as an example[J]. Journal of Ecology and Rural Environment, 37(1):110-119. | |
[24] | 张振鹏, 王玲, 2014. 城市的本质意义及其发展方向论析[J]. 郑州大学学报 (哲学社会科学版), 47(1):76-81. |
ZHANG Z P, WANG L, 2014. Analysis on the Essential Significance and Development Direction of Cities[J]. Journal of Zhengzhou University (Philosophy and Social Sciences Edition), 47(1):76-81. | |
[25] | 朱春阳, 2015. 城市湖泊湿地温湿效应——以武汉市为例[J]. 生态学报, 35(16):5518-5527. |
ZHU C Y, 2015. Effects of urban lake wetland on temperature and humidity: A case study of Wuhan City[J]. Acta Ecologica Sinica, 35(16):5518-5527. |
[1] | TAO Shuangcheng, HUAGN Shanqian, GAO Shuohan, XIONG Xinzhu, HAO Yanzhao, DENG Shunxi. Study on the Control Strategy of Vehicle Emission Based on Scenario Analysis in Guanzhong Urban Agglomeration [J]. Ecology and Environment, 2022, 31(8): 1573-1581. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn