Ecology and Environment ›› 2021, Vol. 30 ›› Issue (9): 1777-1786.DOI: 10.16258/j.cnki.1674-5906.2021.09.001
• Research Articles • Next Articles
Received:
2020-10-28
Online:
2021-09-18
Published:
2021-12-08
作者简介:
张桂莲(1976年生),女,高级工程师,博士,研究方向为城市绿化碳汇计量与生态系统模型研究。E-mail: zgl@shsyky.com
基金资助:
CLC Number:
ZHANG Guilian. Spatial Distribution Characteristics of Carbon Storage of Urban Forests in Shanghai Based on Remote Sensing Estimation[J]. Ecology and Environment, 2021, 30(9): 1777-1786.
张桂莲. 基于遥感估算的上海城市森林碳储量空间分布特征[J]. 生态环境学报, 2021, 30(9): 1777-1786.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.09.001
区域 Area | 林分类型 Forest type | 样地数 Number of plots | 样本量 Number of samples | 最大胸径 Maximum D/cm | 最小胸径 Minimum D/cm | 平均胸径 Mean D/cm | 最大树高 Maximum tree heigtht/m | 最小树高 Minimum tree height/m | 平均树高 Mean tree height/m |
---|---|---|---|---|---|---|---|---|---|
主城区 Main urban area | 栾树 Koelreuteria paniculata | 2 | 12 | 18.6—24.5 | 8.2—9.5 | 13.6—16.3 | 10.2—11.0 | 4.0—6.0 | 5.4—8.5 |
旱柳 Salix matsudana | 1 | 7 | 33.5 | 7.5 | 13.2 | 6.5 | 3.7 | 5.1 | |
雪松 Cedrus deodara | 1 | 31 | 30.1 | 7.5 | 17.0 | 9.5 | 4.3 | 8.3 | |
水杉 Metasequoia glyptostroboides | 1 | 20 | 27.6 | 12.9 | 19.8 | 16.5 | 6.0 | 14.6 | |
混交林 Mixed forest | 2 | 54 | 38—40 | 5.2—6.0 | 14.9—16.7 | 8.8—16.0 | 1.1—3.0 | 6.4—8.1 | |
总计 Total | 7 | 141 | 18.6—40.0 | 5.2—12.9 | 13.2—19.8 | 6.5—16.5 | 1.1—6.0 | 5.1—8.5 | |
非主城区 Non-main urban area | 龙柏 Sabina chinensis | 1 | 15 | 19.1 | 9.8 | 12.7 | 6.5 | 4.0 | 5.5 |
池杉 Taxodium ascendens | 1 | 17 | 24.5 | 13.0 | 19.1 | 13.0 | 9.8 | 11.9 | |
杜英 Elaeocarpus decipiens | 2 | 59 | 18.0—24.2 | 6.2—11.4 | 11.1—18.8 | 7.8—8.7 | 1.8—2.8 | 6.2—6.3 | |
枫香 Liquidambar formosana | 1 | 59 | 17.2 | 6.0 | 11.3 | 12.0 | 1.2 | 8.9 | |
枫杨 Pterocarya stenoptera | 1 | 50 | 32.4 | 10.5 | 20.3 | 20.5 | 4.2 | 14.9 | |
构树 Broussonetia papyrifera | 1 | 10 | 20.5 | 9.6 | 14.4 | 7.0 | 4.5 | 5.9 | |
广玉兰 Magnolia grandiflora | 1 | 84 | 20.5 | 7.2 | 13.8 | 9.5 | 3.6 | 7.0 | |
桂花 Osmanthus fragrans | 1 | 29 | 11.5 | 5.2 | 7.2 | 3.5 | 2.7 | 3.0 | |
榉树 Zelkova serrata | 1 | 42 | 16.0 | 5.0 | 11.3 | 8.8 | 4.3 | 7.1 | |
旱柳 Salix matsudana | 1 | 85 | 18.2 | 5.0 | 9.9 | 10.5 | 1.7 | 8.0 | |
栾树 Koelreuteria paniculata | 1 | 38 | 27.8 | 5.0 | 16.3 | 18.0 | 5.0 | 11.2 | |
落羽杉 Taxodium distichum | 2 | 103 | 31.7—36.5 | 7.6—8.3 | 17.1—21 | 12.0—25.0 | 2.5—3.0 | 9.3—12.1 | |
马褂木 Liriodendron chinense | 1 | 105 | 25.4 | 5.2 | 14.2 | 14.0 | 5.0 | 10.8 | |
女贞 Ligustrum lucidum | 6 | 335 | 14.0—24.9 | 4.3—11.5 | 6.9—14.6 | 5.4—11.0 | 2.5—6.0 | 4.2—7.0 | |
水杉 Metasequoia glyptostroboides | 8 | 349 | 11.3—39.2 | 1.9—16.7 | 8.4—26.7 | 6.6—29.5 | 2.3—8.3 | 5.6—19.4 | |
喜树 Camptotheca acuminata | 2 | 71 | 21.2—24.3 | 6.3—8.2 | 14.0—17.5 | 12.5—16.5 | 2.8—7.0 | 11.0—11.9 | |
香樟 Cinnamomum camphora | 16 | 1053 | 18.4—42.6 | 5.0—18.8 | 11.0—26.0 | 6.3—18.0 | 1.3—8.5 | 3.8—10.7 | |
毛白杨 Populus tomentosa | 2 | 43 | 32.8—43.0 | 15.2—15.9 | 24.3—28.9 | 13.6—28.0 | 3.5—9.9 | 11.8—21.5 | |
银杏 Ginkgo biloba | 4 | 200 | 8.0—14.5 | 5.0—8.0 | 7.2—9.7 | 6.0—9.0 | 0.5—4.5 | 5.4—6.1 | |
广玉兰 Magnolia grandiflora | 1 | 69 | 53.0 | 6.3 | 12.1 | 14.6 | 4.0 | 9.6 | |
紫叶李 Prunus cerasifera | 1 | 35 | 16.1 | 5.0 | 10.0 | 8.0 | 2.9 | 5.4 | |
棕榈 Trachycarpus fortunei | 1 | 14 | 24.8 | 13.2 | 18.6 | 6.6 | 3.0 | 4.4 | |
混交林 Mixed forest | 18 | 533 | 16.4—55 | 5.1—6.5 | 10.1—19.5 | 6.5—18 | 1.1—5.5 | 3.7—9.7 | |
总计 Total | 74 | 3398 | 8.0—55.0 | 5.0—18.8 | 6.9—28.9 | 3.0—29.5 | 0.2—9.9 | 2.6—21.5 | |
上海市 Shanghai | 总计 Total | 81 | 3539 | 8.0—55 | 5.0—18.8 | 6.9—28.9 | 3.0—29.5 | 0.2—9.9 | 2.6—21.5 |
Table 1 Information of sampling plots of different forest types in study areas
区域 Area | 林分类型 Forest type | 样地数 Number of plots | 样本量 Number of samples | 最大胸径 Maximum D/cm | 最小胸径 Minimum D/cm | 平均胸径 Mean D/cm | 最大树高 Maximum tree heigtht/m | 最小树高 Minimum tree height/m | 平均树高 Mean tree height/m |
---|---|---|---|---|---|---|---|---|---|
主城区 Main urban area | 栾树 Koelreuteria paniculata | 2 | 12 | 18.6—24.5 | 8.2—9.5 | 13.6—16.3 | 10.2—11.0 | 4.0—6.0 | 5.4—8.5 |
旱柳 Salix matsudana | 1 | 7 | 33.5 | 7.5 | 13.2 | 6.5 | 3.7 | 5.1 | |
雪松 Cedrus deodara | 1 | 31 | 30.1 | 7.5 | 17.0 | 9.5 | 4.3 | 8.3 | |
水杉 Metasequoia glyptostroboides | 1 | 20 | 27.6 | 12.9 | 19.8 | 16.5 | 6.0 | 14.6 | |
混交林 Mixed forest | 2 | 54 | 38—40 | 5.2—6.0 | 14.9—16.7 | 8.8—16.0 | 1.1—3.0 | 6.4—8.1 | |
总计 Total | 7 | 141 | 18.6—40.0 | 5.2—12.9 | 13.2—19.8 | 6.5—16.5 | 1.1—6.0 | 5.1—8.5 | |
非主城区 Non-main urban area | 龙柏 Sabina chinensis | 1 | 15 | 19.1 | 9.8 | 12.7 | 6.5 | 4.0 | 5.5 |
池杉 Taxodium ascendens | 1 | 17 | 24.5 | 13.0 | 19.1 | 13.0 | 9.8 | 11.9 | |
杜英 Elaeocarpus decipiens | 2 | 59 | 18.0—24.2 | 6.2—11.4 | 11.1—18.8 | 7.8—8.7 | 1.8—2.8 | 6.2—6.3 | |
枫香 Liquidambar formosana | 1 | 59 | 17.2 | 6.0 | 11.3 | 12.0 | 1.2 | 8.9 | |
枫杨 Pterocarya stenoptera | 1 | 50 | 32.4 | 10.5 | 20.3 | 20.5 | 4.2 | 14.9 | |
构树 Broussonetia papyrifera | 1 | 10 | 20.5 | 9.6 | 14.4 | 7.0 | 4.5 | 5.9 | |
广玉兰 Magnolia grandiflora | 1 | 84 | 20.5 | 7.2 | 13.8 | 9.5 | 3.6 | 7.0 | |
桂花 Osmanthus fragrans | 1 | 29 | 11.5 | 5.2 | 7.2 | 3.5 | 2.7 | 3.0 | |
榉树 Zelkova serrata | 1 | 42 | 16.0 | 5.0 | 11.3 | 8.8 | 4.3 | 7.1 | |
旱柳 Salix matsudana | 1 | 85 | 18.2 | 5.0 | 9.9 | 10.5 | 1.7 | 8.0 | |
栾树 Koelreuteria paniculata | 1 | 38 | 27.8 | 5.0 | 16.3 | 18.0 | 5.0 | 11.2 | |
落羽杉 Taxodium distichum | 2 | 103 | 31.7—36.5 | 7.6—8.3 | 17.1—21 | 12.0—25.0 | 2.5—3.0 | 9.3—12.1 | |
马褂木 Liriodendron chinense | 1 | 105 | 25.4 | 5.2 | 14.2 | 14.0 | 5.0 | 10.8 | |
女贞 Ligustrum lucidum | 6 | 335 | 14.0—24.9 | 4.3—11.5 | 6.9—14.6 | 5.4—11.0 | 2.5—6.0 | 4.2—7.0 | |
水杉 Metasequoia glyptostroboides | 8 | 349 | 11.3—39.2 | 1.9—16.7 | 8.4—26.7 | 6.6—29.5 | 2.3—8.3 | 5.6—19.4 | |
喜树 Camptotheca acuminata | 2 | 71 | 21.2—24.3 | 6.3—8.2 | 14.0—17.5 | 12.5—16.5 | 2.8—7.0 | 11.0—11.9 | |
香樟 Cinnamomum camphora | 16 | 1053 | 18.4—42.6 | 5.0—18.8 | 11.0—26.0 | 6.3—18.0 | 1.3—8.5 | 3.8—10.7 | |
毛白杨 Populus tomentosa | 2 | 43 | 32.8—43.0 | 15.2—15.9 | 24.3—28.9 | 13.6—28.0 | 3.5—9.9 | 11.8—21.5 | |
银杏 Ginkgo biloba | 4 | 200 | 8.0—14.5 | 5.0—8.0 | 7.2—9.7 | 6.0—9.0 | 0.5—4.5 | 5.4—6.1 | |
广玉兰 Magnolia grandiflora | 1 | 69 | 53.0 | 6.3 | 12.1 | 14.6 | 4.0 | 9.6 | |
紫叶李 Prunus cerasifera | 1 | 35 | 16.1 | 5.0 | 10.0 | 8.0 | 2.9 | 5.4 | |
棕榈 Trachycarpus fortunei | 1 | 14 | 24.8 | 13.2 | 18.6 | 6.6 | 3.0 | 4.4 | |
混交林 Mixed forest | 18 | 533 | 16.4—55 | 5.1—6.5 | 10.1—19.5 | 6.5—18 | 1.1—5.5 | 3.7—9.7 | |
总计 Total | 74 | 3398 | 8.0—55.0 | 5.0—18.8 | 6.9—28.9 | 3.0—29.5 | 0.2—9.9 | 2.6—21.5 | |
上海市 Shanghai | 总计 Total | 81 | 3539 | 8.0—55 | 5.0—18.8 | 6.9—28.9 | 3.0—29.5 | 0.2—9.9 | 2.6—21.5 |
类型 Types | 遥感数据 Remote sensing data | 计算公式 Formula |
---|---|---|
植被指数 Vegetation index | 归一化植被指数 Normalized difference vegetation index (NDVI) | |
比值植被指数 Simple ratio index (SRI) | Y=ρ1/ρ2 | |
增强植被指数 Enhanced vegetation index (EVI) | | |
大气阻抗植被指数 Atmospherically resistant vegetation index (ARVI) | | |
结构不敏感色数指数 Structure-senstitive pigment index (SIPI) | | |
纹理特征 Textural features | 平均值 Mean (ME) | |
方差 Variance (VA) | | |
信息熵 Entropy (EN) | | |
偏斜 Skewness (SK) | | |
数据范围 Datarange | — |
Table 2 Vegetation index and texture parameter calculation methods
类型 Types | 遥感数据 Remote sensing data | 计算公式 Formula |
---|---|---|
植被指数 Vegetation index | 归一化植被指数 Normalized difference vegetation index (NDVI) | |
比值植被指数 Simple ratio index (SRI) | Y=ρ1/ρ2 | |
增强植被指数 Enhanced vegetation index (EVI) | | |
大气阻抗植被指数 Atmospherically resistant vegetation index (ARVI) | | |
结构不敏感色数指数 Structure-senstitive pigment index (SIPI) | | |
纹理特征 Textural features | 平均值 Mean (ME) | |
方差 Variance (VA) | | |
信息熵 Entropy (EN) | | |
偏斜 Skewness (SK) | | |
数据范围 Datarange | — |
种类 Species | 生物量方程 Biomass equation | 碳质量分数 Mass fraction of carbon |
---|---|---|
香樟 Cinnamomum camphora | Mt =0.3455D2.0333 | 0.4433 |
水杉 Metasequoia glyptostroboides | Mt =0.06291D2.4841 | 0.4340 |
女贞 Ligustrum lucidum | Mt =0.139994D1.90957 | 0.4289 |
银杏 Ginkgo biloba | Mt =0.133137D2.3357 | 0.4437 |
杜英 Elaeocarpus sylvestri | Mt =0.18833D2.14125 | 0.4402 |
马褂木 Liriodendron chinense | Mt =0.06393D2.61147 | 0.4443 |
毛白杨 Populus tomentosa | Mt =0.01901D3.10510 | 0.4347 |
广玉兰 Magnolia grandiflora | Mt =0.330788D1.90957 | 0.4335 |
栾树 Koelreuteria bipinnata | Mt =0.10994D2.48438 | 0.4283 |
无患子 Sapindus saponaria | Ma=0.14119D2.35753 | 0.4359 |
雪松 Cedrus deodara | Mt =0.1606D2.2134 | 0.4542 |
毛白杨 Populus simonii | Mt =0.01901D3.10510 | 0.4347 |
其它软阔类 Other soft broad-leaved species | Mt =0.0275D2.8203 | 0.4850* |
其它硬阔类 Other hard broad-leaved species | Mt =0.2395D2.1044 | 0.4970* |
其他针叶类 Other conifers species | Mt =0.1606D2.2134 | 0.4542 |
Table 3 The allometric growth equation of the main tree species
种类 Species | 生物量方程 Biomass equation | 碳质量分数 Mass fraction of carbon |
---|---|---|
香樟 Cinnamomum camphora | Mt =0.3455D2.0333 | 0.4433 |
水杉 Metasequoia glyptostroboides | Mt =0.06291D2.4841 | 0.4340 |
女贞 Ligustrum lucidum | Mt =0.139994D1.90957 | 0.4289 |
银杏 Ginkgo biloba | Mt =0.133137D2.3357 | 0.4437 |
杜英 Elaeocarpus sylvestri | Mt =0.18833D2.14125 | 0.4402 |
马褂木 Liriodendron chinense | Mt =0.06393D2.61147 | 0.4443 |
毛白杨 Populus tomentosa | Mt =0.01901D3.10510 | 0.4347 |
广玉兰 Magnolia grandiflora | Mt =0.330788D1.90957 | 0.4335 |
栾树 Koelreuteria bipinnata | Mt =0.10994D2.48438 | 0.4283 |
无患子 Sapindus saponaria | Ma=0.14119D2.35753 | 0.4359 |
雪松 Cedrus deodara | Mt =0.1606D2.2134 | 0.4542 |
毛白杨 Populus simonii | Mt =0.01901D3.10510 | 0.4347 |
其它软阔类 Other soft broad-leaved species | Mt =0.0275D2.8203 | 0.4850* |
其它硬阔类 Other hard broad-leaved species | Mt =0.2395D2.1044 | 0.4970* |
其他针叶类 Other conifers species | Mt =0.1606D2.2134 | 0.4542 |
模型 Regression model | 方程 Equation | R2 | Adjusted R2 | F | Sig. |
---|---|---|---|---|---|
多元逐步回归模型 Stepwise regression model | Y=2219.23-605.05x1+0.22x2+151.83x3+0.06x4 | 0.464 | 0.40 | 6.92 | 0.000 |
线性模型 Linear model | Y=55.40+6152.52x1 | 0.263 | 0.24 | 12.507 | 0.001 |
二次曲线模型 Second-order polynomial model | Y= -1007.41+14412.20x1-13681.10 | 0.286 | 0.24 | 6.809 | 0.006 |
三次曲线模型 Cubic curve model | Y=2717.23+136728.20x1+179080.60 | 0.365 | 0.31 | 6.332 | 0.003 |
复合模型 Composite model | Y=369.15×74.78x1 | 0.297 | 0.28 | 14.817 | 0.002 |
幂 (次方) 模型 Power index model | Y=5902.48 | 0.337 | 0.32 | 17.763 | 0.000 |
S模型 S-Model | Y=e8.03-0.19/x1 | 0.315 | 0.30 | 16.092 | 0.000 |
成长模型 Growth model | Y=e5.91+4.32x1 | 0.297 | 0.28 | 14.817 | 0.000 |
指数模型 Exponential model | Y=369.15e4.32x1 | 0.297 | 0.30 | 14.817 | 0.000 |
对数模型 Logit model | Y=3980.33+1521.37lnx1 | 0.264 | 0.24 | 12.537 | 0.001 |
Table 4 Regression model and parameters of urban forests carbon storage
模型 Regression model | 方程 Equation | R2 | Adjusted R2 | F | Sig. |
---|---|---|---|---|---|
多元逐步回归模型 Stepwise regression model | Y=2219.23-605.05x1+0.22x2+151.83x3+0.06x4 | 0.464 | 0.40 | 6.92 | 0.000 |
线性模型 Linear model | Y=55.40+6152.52x1 | 0.263 | 0.24 | 12.507 | 0.001 |
二次曲线模型 Second-order polynomial model | Y= -1007.41+14412.20x1-13681.10 | 0.286 | 0.24 | 6.809 | 0.006 |
三次曲线模型 Cubic curve model | Y=2717.23+136728.20x1+179080.60 | 0.365 | 0.31 | 6.332 | 0.003 |
复合模型 Composite model | Y=369.15×74.78x1 | 0.297 | 0.28 | 14.817 | 0.002 |
幂 (次方) 模型 Power index model | Y=5902.48 | 0.337 | 0.32 | 17.763 | 0.000 |
S模型 S-Model | Y=e8.03-0.19/x1 | 0.315 | 0.30 | 16.092 | 0.000 |
成长模型 Growth model | Y=e5.91+4.32x1 | 0.297 | 0.28 | 14.817 | 0.000 |
指数模型 Exponential model | Y=369.15e4.32x1 | 0.297 | 0.30 | 14.817 | 0.000 |
对数模型 Logit model | Y=3980.33+1521.37lnx1 | 0.264 | 0.24 | 12.537 | 0.001 |
项目 Content | 统计值 Statistic | 变异系数 Variable coefficient | 偏度 Skewness | 峰度 Kurtosis | |||||
---|---|---|---|---|---|---|---|---|---|
样本量 Simples | 最小值 Minimum value | 最大值 Maximum value | 均值 Mean value | 中位数 Median value | 标准偏差 Standard deviation | ||||
样地碳储量 Carbon storage in samples | 研究区 Study area | 81 | 0.09 | 7.10 | 2.14 | 1.70 | 1.60 | 0.75 | 1.16 |
非主城区 Non-main city area | 75 | 0.09 | 7.10 | 2.20 | 1.75 | 1.64 | 0.75 | 1.07 | |
主城区 Main urban area | 6 | 0.53 | 1.90 | 1.38 | 1.47 | 0.52 | 0.75 | -0.86 |
Table 5 The carbon storage of the sampling plots
项目 Content | 统计值 Statistic | 变异系数 Variable coefficient | 偏度 Skewness | 峰度 Kurtosis | |||||
---|---|---|---|---|---|---|---|---|---|
样本量 Simples | 最小值 Minimum value | 最大值 Maximum value | 均值 Mean value | 中位数 Median value | 标准偏差 Standard deviation | ||||
样地碳储量 Carbon storage in samples | 研究区 Study area | 81 | 0.09 | 7.10 | 2.14 | 1.70 | 1.60 | 0.75 | 1.16 |
非主城区 Non-main city area | 75 | 0.09 | 7.10 | 2.20 | 1.75 | 1.64 | 0.75 | 1.07 | |
主城区 Main urban area | 6 | 0.53 | 1.90 | 1.38 | 1.47 | 0.52 | 0.75 | -0.86 |
多元逐步回归模型 Multiple stepwise regression model | 回归残差模型 Multiple stepwise linear regression+ordinary Kriging model | |
---|---|---|
均方根误差 RMSE | 21.37% | 19.17% |
平均绝对误差 MAE | 15.87% | 15.00% |
Table 6 Accuracy verification results of Shanghai urban forests carbon storage estimation model
多元逐步回归模型 Multiple stepwise regression model | 回归残差模型 Multiple stepwise linear regression+ordinary Kriging model | |
---|---|---|
均方根误差 RMSE | 21.37% | 19.17% |
平均绝对误差 MAE | 15.87% | 15.00% |
[1] |
COBURN A, ROBERTS B, 2004. A multiscale texture analysis procedure for improved forest stand classification[J]. International Journal of Remote Sensing, 25(20): 4287-4308.
DOI URL |
[2] |
DAVIES Z G, EDMONDSON J L, HEINEMEYER A, et al., 2011. Mapping an urban ecosystem service: Quantifying above-ground carbon storage at a city-wide scale[J]. Journal of Applied Ecology, 48(5): 1125-1134.
DOI URL |
[3] |
LAL R, 2005. Forest soils and carbon sequestration[J]. Forest Ecology and Management, 220(1-3): 242-258.
DOI URL |
[4] | LIU C F, LI X M, 2012. Carbon storage and sequestration by urban forests in Shenyang, China[J]. Urban Forestry & Urban Greening, 11(2): 121-128. |
[5] |
LIU X P, CHO S H, ARMSWORTH P R, et al., 2021. Where and when carbon storage can be bought cost effectively from private forest owners[J]. Environmental Management, 67: 1-19.
DOI URL |
[6] |
NOWAK D J, GREENFIELD E J, HOEHN R E, et al., 2013. Carbon storage and sequestration by trees in urban and community areas of the United States[J]. Environmental Pollution, 178: 229-236.
DOI URL |
[7] |
PEREIRA P, OLIVA M, BALTRENAITE E, 2010. Modelling extreme precipitation in hazardous mountainous areas. Contribution to landscape planning and environmental management[J]. Journal of Environmental Engineering and Landscape Management, 18(4): 329-342.
DOI URL |
[8] |
POORAZIMY M, SHATAEE S, MCROBERTS R E, et al., 2020. Integrating airborne laser scanning data, space-borne radar data and digital aerial imagery to estimate aboveground carbon stock in Hyrcanian forests, Iran[J]. Remote Sensing of Environment, DOI: 10.1016/j.rse.2020.111669.
DOI |
[9] | SCHLESINGER W H, 1991. Biogeochemistry: An Analysis of Global Change[M]. California: Academic Press Inc. |
[10] |
SHEN G R, WANG Z J, LIU C J, et al., 2020. Mapping aboveground biomass and carbon in Shanghai's urban forest using Landsat ETM+ and inventory data[J]. Urban Forestry & Urban Greening, DOI: 10.1016/j.ufug.2020.126655.
DOI |
[11] |
SVIREJEVA-HOPKINS A, SCHELLNHUBER H J, 2006. Modelling carbon dynamics from urban land conversion: Fundamental model of city in relation to a local carbon cycle[J]. Carbon Balance and Management, 1(1): 1-9.
DOI URL |
[12] | 曹庆先, 徐大平, 鞠洪波, 2011. 基于TM影像纹理与光谱特征和KNN方法估算5种红树林群落生物量[J]. 林业科学研究, 24(2): 144-150. |
CAO Q X, XU D P, JU H B, 2011. Biomass estimation of five kinds of mangrove community with the KNN method based on the spectral information and textural features of TM images[J]. Forest Research, 24(2): 144-150. | |
[13] | 陈科屹, 刘润华, 张博, 等, 2021. 武汉市环城林带森林碳储量及其动态变化[J]. 水土保持研究, 28(2): 54-59, 66. |
CHEN K Y, LIU R H, ZHANG B, et al., 2021. Forest carbon storage and its dynamic change in the city-encircling forest belt of Wuhan city[J]. Research of Soil and Water Conservation, 28(2): 54-59, 66. | |
[14] | 徐飞, 刘为华, 任文玲, 等, 2010. 上海城市森林群落结构对固碳能力的影响[J]. 生态学杂志, 29(3): 439-447. |
XU F, LIU W H, REN W L, et al., 2010. Effects of community structure on carbon fixation of urban forests in Shanghai, China[J]. Chinese Journal of Ecology, 29(3): 439-447. | |
[15] | 徐飞, 2010. 上海城市森林群落结构特征与固碳能力研究[D]. 上海: 华东师范大学. |
XU F, 2010. Study on community structure and carbon fixation of urban forest in Shanghai, China[D]. Shanghai: East China Normal University. | |
[16] | 黄宇, 冯宗炜, 汪思龙, 等, 2005. 杉木、火力楠纯林及其混交林生态系统C、N贮量[J]. 生态学报, 25(12): 3146-3154. |
HUANG Y, FENG Z W, WANG S L, et al., 2005. C and N stocks under three plantation forest ecosystems of Chinese-fir, Michelia macclurei and their mixture[J]. Acta Ecologica Sinica, 25(12): 3146-3154. | |
[17] | 郭雪艳, 2017. 上海城市森林多尺度生态质量评价研究[D]. 上海: 华东师范大学. |
GUO X Y, 2017. Multi-scale assessments on ecological quality of urban forest in Shanghai[D]. Shanghai: East China Normal University. | |
[18] | 候勃, 岳文泽, 王腾飞, 2020. 中国大都市区碳排放时空异质性探测与影响因素--以上海市为例[J]. 经济地理, 40(9): 82-90. |
HOU B, YUE W Z, WANG T F, 2020. Spatiotemporal heterogeneity pattern and influencing factors of carbon emission in metropolitan areas of China: A Case of Shanghai[J]. Economic Geography, 40(9): 82-90.
DOI URL |
|
[19] | 胡鞍钢, 2021. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 21(3): 1-15. |
HU A G, 2021. China's Goal of Achieving Carbon Peak by 2030 and Its Main Approaches[J]. Journal of Beijing University of Technology (Social Sciences Edition), 21(3): 1-15. | |
[20] | 孔蕊, 张增信, 张凤英, 等, 2020. 长江流域森林碳储量的时空变化及其驱动因素分析[J]. 水土保持研究, 27(4): 60-66. |
KONG R, ZHANG Z X, ZHANG F Y, et al., 2020. Spatial and temporal dynamics of forest carbon storage and its driving factors in the Yangtze River basin[J]. Research of Soil and Water Conservation, 27(4): 60-66. | |
[21] | 马涛, 2011. 上海林地和绿地碳汇发展困境与对策[J]. 中国城市林业, 9(2): 23-25. |
MA T, 2011. Development dilemma and countermeasures of carbon sequestration in forest land and green land in Shanghai[J]. Journal of Chinese Urban Forestry, 9(2): 23-25. | |
[22] | 马想, 张浪, 黄绍敏, 等, 2020. 上海城市绿地土壤肥力变化分析[J]. 中国园林, 36(5): 104-109. |
MA X, ZHANG L, HUANG S M, et al., 2020. Analysis on the change of soil fertility in Shanghai urban green space[J]. Chinese Landscape Architecture, 36(5): 104-109. | |
[23] | 毛齐正, 黄甘霖, 邬建国, 2015. 城市生态系统服务研究综述[J]. 应用生态学报, 26(4): 1023-1033. |
MAO Q Z, HUANG G L, WU J G, 2015. Urban ecosystem services: A review[J]. Chinese Journal of Applied Ecology, 26(4): 1023-1033. | |
[24] | 上海市人民政府, 2018. 上海市城市总体规划(2017-2035年)[R/OL]. (2018-01) [2021-06-05]. https://www.shanghai.gov.cn/nw42806/index.html. |
Shanghai Municipal People's Government, 2018. Shanghai urban master plan (2017-2035)[R/OL]. (2018-01) [2021-06-05]. https://www.shanghai.gov.cn/nw42806/index.html. | |
[25] | 汤浩藩, 许彦红, 艾建林, 2019. 云南省森林植被碳储量和碳密度及其空间分布格局[J]. 林业资源管理 (5): 37-43. |
TANG H F, XU Y H, AI J L, 2019. Carbon storage and carbon density of forest vegetation and their spatial distribution pattern in Yunnan Province[J]. Forest Resources Management (5): 37-43. | |
[26] | 汤煜, 石铁矛, 卜英杰, 等, 2020. 城市绿地碳储量估算及空间分布特征[J]. 生态学杂志, 39(4): 1387-1398. |
TANG Y, SHI T M, BU Y J, et al., 2020. Estimation and spatial distribution of carbon storage in urban greenspace[J]. Chinese Journal of Ecology, 39(4): 1387-1398. | |
[27] | 王瑞静, 赵敏, 高峻, 2011. 城市森林主要植被类型碳储量研究--以崇明岛为例[J]. 地理科学, 31(4): 490-494. |
WANG R J, ZHAO M, GAO J, 2011. Carbon storage of main vegetation types of urban forest, Chongming island of China[J]. Scientia Geographica Sinica, 31(4): 490-494. | |
[28] | 王琰, 2019. 吕梁山森林生态系统碳密度及空间分布格局[D]. 太原: 山西大学. |
WANG Y, 2019. Carbon density and spatial distribution pattern of forest ecosystem in the Lüliang Mountains, China[D]. Taiyuan: Shanxi University. | |
[29] | 王紫君, 申广荣, 朱赟, 等, 2016a. 基于遥感和空间分析的上海城市森林生物量分布特征[J]. 植物生态学报, 40(4): 385-394. |
WANG Z J, SHEN G R, ZHU Y, et al., 2016a. Research on characteristics of biomass distribution in urban forests of Shanghai metropolis based on remote sensing and spatial analysis[J]. Chinese Journal of Plant Ecology, 40(4): 385-394.
DOI URL |
|
[30] | 王紫君, 申广荣, 朱赟, 等, 2016b. 上海城市森林叶生物量遥感监测[J]. 生态学杂志, 35(5): 1308-1315. |
WANG Z J, SHEN G R, ZHU Y, et al., 2016b. Remote-sensing monitoring of urban forest leaf biomass in Shanghai[J]. Chinese Journal of Ecology, 35(5): 1308-1315. | |
[31] | 徐丽华, 张结存, 黄博, 等, 2014. 基于QuickBird影像的城市森林碳储量遥感估测[J]. 应用生态学报, 25(10): 2787-2793. |
XU L H, ZHANG J C, HUANG B, et al., 2014. Remote sensing estimation of urban forest carbon stocks based on QuickBird images[J]. Chinese Journal of Applied Ecology, 25(10): 2787-2793. | |
[32] | 易扬, 张桂莲, 张浪, 等, 2020. 基于高分二号遥感影像的城市植被三维绿量研究[J]. 园林 (11): 2-7. |
YI Y, ZHANG G L, ZHANG L, et al., 2020. Research of 3D Green Quantity of Urban Vegetation Based on GF-2 Remote Sensing Image[J]. Landscape Architecture (11): 2-7. | |
[33] | 易扬, 胡昕利, 史明昌, 等, 2021. 基于MODIS NDVI的长江中游区域植被动态及与气候因子的关系[J]. 生态学报, 41(19): 7796-7807. |
YI Y, HU X L, SHI M C, et al., 2021. Vegetation dynamics and its relationship with climate factors in the middle reaches of the Yangtze River based on MODIS NDVI[J]. Acta Ecologica Sinica, 41(19): 7796-7807. | |
[34] | 张浪, 2020. 城市困难立地概念及其分类辨析[J]. 上海建设科技 (3): 107-109. |
ZHANG L, 2020. Concept and Classification of Urban Difficult Sites[J]. Shanghai Construction Science & Technology (3): 107-109. | |
[35] | 张希金, 冷寒冰, 赵广琦, 等, 2018. 上海4种常见绿化树种地上生物量模型构建[J]. 南京林业大学学报 (自然科学版), 42(2): 141-146. |
ZHANG X J, LENG H B, ZHAO G Q, et al., 2018. Allometric models for estimating aboveground biomass for four common greening tree species in Shanghai City, China[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 42(2): 141-146. | |
[36] | 张永生, 巢清尘, 陈迎, 等, 2021. 中国碳中和: 引领全球气候治理和绿色转型[J/OL]. 国际经济评论 (3): 9-26, 4. |
ZHANG Y S, CHAO Q C, CHEN Y, et al., 2021. China's carbon neutralization: leading global climate governance and green transformation[J/OL]. International Economic Review (3): 9-26, 4. | |
[37] | 中国环境网, 2021. 构建公园城市提供精致生态空间, 上海森林覆盖率达18.49% [EB/OL]. (2021-01) [2021-06-05]. https://www.cenews.com.cn/newpos/sh/yj/202101/t20210120_968485.html. |
China Environment Network, 2021. Build a park city and provide exquisite ecological space. The forest coverage rate of Shanghai reaches 18.49% [EB/OL]. (2021-01) [2021-06-05]. https://www.cenews.com.cn/newpos/sh/yj/202101/t20210120_968485.html. | |
[38] | 中华人民共和国中央人民政府, 2020. 继往开来, 开启全球应对气候变化新征程--在气候雄心峰会上的讲话[EB/OL]. (2020-12-12) [2021-06-05]. http://www.gov.cn/gongbao/content/2020/content_5570055.html. |
The Central People's Government of the people's Republic of China, 2020. Carrying forward the past and forging ahead into the future and opening a new journey in global response to climate change-Speech at the climate ambition summit[EB/OL] (2020-12-12) [2021-06-05]. http://www.gov.cn/gongbao/content/2020/content_5570055.html. | |
[39] | 中华人民共和国住房和城乡建设部, 2019. 2019年城市建设统计年鉴[M/OL]. (2020-12-31) [2021-06-05]. http://www.mohurd.gov.cn/xytj/index.html. |
Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2019. Statistical yearbook of urban construction in 2019[M/OL]. http://www.mohurd.gov.cn/xytj/index.html. | |
[40] | 仲启铖, 傅煜, 张桂莲, 2019. 上海市乔木林生物量估算及动态分析[J]. 浙江农林大学学报, 36(3): 524-532. |
ZHONG Q C, FU Y, ZHANG G L, 2019. Biomass estimation and dynamic analysis of arbor forest in Shanghai[J]. Journal of Zhejiang A & F University, 36(3): 524-532. | |
[41] | 周健, 肖荣波, 庄长伟, 等, 2013. 城市森林碳汇及其抵消能源碳排放效果--以广州为例[J]. 生态学报, 33(18): 5865-5873. |
ZHOU J, XIAO R B, ZHUANG C W, et al., 2013. The carbon sink of urban forests and efficacy on offsetting energy carbon emissions from city in Guangzhou[J]. Acta Ecologica Sinica, 33(18): 5865-5873.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn