生态环境学报 ›› 2024, Vol. 33 ›› Issue (1): 35-44.DOI: 10.16258/j.cnki.1674-5906.2024.01.004
王郑钧(), 王邵军*(
), 肖博, 解玲玲, 郭志鹏, 张昆凤, 张路路, 樊宇翔, 郭晓飞, 罗双, 夏佳慧, 李瑞, 杨胜秋, 兰梦杰
收稿日期:
2023-11-27
出版日期:
2024-01-18
发布日期:
2024-03-19
通讯作者:
*王邵军。E-mail: shaojunwang2009@163.com作者简介:
王郑钧(1998年生),男,硕士研究生,主要从事森林土壤及温室气体等相关相关研究。E-mail: 18764305810@163.com
基金资助:
WANG Zhenjun(), WANG Shaojun*(
), XIAO Bo, XIE Lingling, GUO Zhipeng, ZHANG Kunfeng, ZHANG Lulu, FAN Yuxiang, GUO Xiaofei, LUO Shuang, XIA Jiahui, LI Rui, YANG Shengqiu, LAN Mengjie
Received:
2023-11-27
Online:
2024-01-18
Published:
2024-03-19
摘要:
蚂蚁筑巢能够通过影响土壤微生物及理化环境而直接或间接调控土壤有机碳各组分积累及分配动态。以西双版纳崖豆藤热带森林群落为研究样地,测定蚁巢和非巢地土壤碳库组分(总有机碳、易氧化有机碳、微生物生物量碳)含量及分配(易氧化有机碳/总有机碳、微生物生物量碳/总有机碳)的时空动态,分析蚂蚁筑巢引起热带森林土壤性质改变对有机碳组分积累与分配的影响特征。结果表明,1)蚂蚁筑巢显著促进土壤总有机碳及各组分含量的积累(P<0.01)。相较于非巢地,蚁巢土壤总有机碳、微生物生物量碳、易氧化有机碳含量分别提高了19.7%、35.4%和153.3%。2)蚂蚁筑巢显著影响土壤碳库各组分含量的时空变化(P<0.050)。其中,相较于非蚁巢,蚁巢土壤总有机碳、易氧化有机碳、微生物生物量碳含量季节变化的增幅分别为11.4%-30.1%、13.6%-72.3%、53.4%-212.2%;蚁巢土壤总有机碳、微生物生物量碳、易氧化有机碳含量沿土层降幅(43.1%-422.4%)显著高于非蚁巢(38.1%-111.4%)。3)蚁巢土壤微生物生物量碳(15.2%)和易氧化有机碳(36.9%)在总有机碳中分配均值均显著高于非巢地(7.5%-31.6%),蚁巢土壤微生物生物量碳分配沿土层降幅(63.1%)小于非蚁巢(75.2%),易氧化有机碳分配(277.2%)则大于非蚁巢(53.4%)。4)主成分分析表明,温湿度、pH、氨氮是调控蚁巢土壤有机碳组分积累的主要协同因子,温度和容重是蚁巢土壤有机碳组分分配的主控因子。蚂蚁筑巢主要通过改变土壤物理环境(微气候、酸碱性、通气性)和土壤氮库(铵氮)的状况,进而对土壤有机碳组分积累及组分分配产生重要影响。
中图分类号:
王郑钧, 王邵军, 肖博, 解玲玲, 郭志鹏, 张昆凤, 张路路, 樊宇翔, 郭晓飞, 罗双, 夏佳慧, 李瑞, 杨胜秋, 兰梦杰. 西双版纳热带森林土壤有机碳积累-分配动态对蚂蚁筑巢活动的响应[J]. 生态环境学报, 2024, 33(1): 35-44.
WANG Zhenjun, WANG Shaojun, XIAO Bo, XIE Lingling, GUO Zhipeng, ZHANG Kunfeng, ZHANG Lulu, FAN Yuxiang, GUO Xiaofei, LUO Shuang, XIA Jiahui, LI Rui, YANG Shengqiu, LAN Mengjie. Response of Soil Organic Carbon Accumulation and Allocation Dynamics to Ant Nesting Activities in Xishuangbanna Tropical Forests[J]. Ecology and Environment, 2024, 33(1): 35-44.
来源 | df | w(TOC)/ (g·kg−1) | w(EOC)/ (g·kg−1) | w(MBC)/ (g·kg−1) | w(MBC)/ w(TOC) | w(EOC)/ w(TOC) |
---|---|---|---|---|---|---|
处理 | 2 | 32.32*** 1) | 8.79** 2) | 11.01** | 6.24* | 1.54* |
月份 | 4 | 70.70*** | 21.82*** | 4.72** | 1.24* | 8.03*** |
土层 | 3 | 38.76*** | 19.11*** | 8.52** | 4.33* | 5.29* |
处理×月份 | 8 | 1.52 | 2.03 | 1.56 | 0.36 | 1.40 |
处理×土层 | 6 | 3.07* 3) | 4.30** | 6.43*** | 1.79* | 5.35*** |
月份×土层 | 12 | 6.31*** | 2.58* | 1.18 | 0.22 | 1.95* |
处理×月份×土层 | 24 | 11.80*** | 0.719 | 1.18 | 0.67 | 0.26 |
表1 不同处理、土层、月份及其交互作用对土壤碳组分及分配影响的方差分析
Table 1 ANOVA analyses variance analysis of the effects of different treatments, soil layers, months and their interactions on soil carbon composition and distribution
来源 | df | w(TOC)/ (g·kg−1) | w(EOC)/ (g·kg−1) | w(MBC)/ (g·kg−1) | w(MBC)/ w(TOC) | w(EOC)/ w(TOC) |
---|---|---|---|---|---|---|
处理 | 2 | 32.32*** 1) | 8.79** 2) | 11.01** | 6.24* | 1.54* |
月份 | 4 | 70.70*** | 21.82*** | 4.72** | 1.24* | 8.03*** |
土层 | 3 | 38.76*** | 19.11*** | 8.52** | 4.33* | 5.29* |
处理×月份 | 8 | 1.52 | 2.03 | 1.56 | 0.36 | 1.40 |
处理×土层 | 6 | 3.07* 3) | 4.30** | 6.43*** | 1.79* | 5.35*** |
月份×土层 | 12 | 6.31*** | 2.58* | 1.18 | 0.22 | 1.95* |
处理×月份×土层 | 24 | 11.80*** | 0.719 | 1.18 | 0.67 | 0.26 |
图2 蚁巢与非蚁巢土壤总有机碳时空变化 不同大写字母表示同一月份、土层蚁巢非蚁巢差异显著性,不同小写字母表示蚁巢非蚁巢不同月份、土层差异显著性(P<0.050)
Figure 2 Temporal and spatial changes of soil total organic carbon in ant and the reference soils
图3 蚁巢与非蚁巢土壤碳组分与配比时空变化 不同大写字母表示同一土层、月份蚁巢非蚁巢差异显著性,不同小写字母表示蚁巢非蚁巢不同土层、土层差异显著性(P<0.050)
Figure 3 Temporal and spatial distribution of soil carbon composition and distribution in ant nest and the reference soils
土壤类型 | 月份 | pH | 含水率/% | 容重/(g·cm−3) | 温度/℃ | w(TN)/(g·kg−1) | w(DON)/(mg·kg−1) | w(AN)/(mg·kg−1) | w(NN)/(mg·kg−1) |
---|---|---|---|---|---|---|---|---|---|
蚁巢 | 3月 | 3.85±0.01Aa | 14.2±0.7Ac | 1.31±0.01Ab | 20.10±0.05Ac | 2.01±0.07Ab | 106.15±4.69Bb | 8.48±1.15Ab | 2.72±0.12Ab |
6月 | 3.62±0.01Ab | 31.8±0.8Ba | 1.50±0.02Ba | 24.94±0.14Aa | 6.24±0.64Ba | 297.68±28.59Ba | 40.17±3.12Ba | 10.32±0.85Ba | |
9月 | 3.76±0.02Aab | 27.8±0.8Bb | 1.03±0.01Ac | 24.10±0.06Aa | 2.89±0.09Ab | 155.67±11.53Aab | 21.45±1.79Bb | 5.50±0.62Bb | |
12月 | 3.89±0.02Ba | 21.4±0.2Bb | 1.30±0.01Bb | 21.11±0.13Bb | 1.07±0.04Bb | 126.87±13.28Bb | 17.50±0.60Ab | 1.83±0.09Ab | |
F | 5.909 | 12.753 | 18.346 | 57.905 | 6.887 | 5.767 | 6.392 | 5.971 | |
P | 0.003 | 0.000 | 0.000 | 0.000 | 0.005 | 0.003 | 0.004 | 0.003 | |
非蚁巢 | 3月 | 3.85±0.01Aa | 12.0±0.1Ab | 1.30±0.01Aa | 19.85±0.06Ab | 1.97±0.07Ab | 69.07±6.51Aa | 7.69±0.53Ab | 2.70±0.18Ab |
6月 | 3.72±0.01Bb | 27.0±0.3Aa | 1.22±0.01Aa | 24.95±0.03Aa | 2.46±0.09Aab | 127.48±8.00Aa | 25.93±1.35Aa | 6.30±0.18Aa | |
9月 | 3.77±0.01Aab | 22.9±0.2Aa | 1.17±0.02Ab | 24.12±0.02Aa | 2.82±0.07Aa | 97.40±5.70Aa | 12.64±1.01Ab | 1.84±0.06Ab | |
12月 | 3.82±0.01Aab | 15.7±0.8Ab | 1.41±0.06Aa | 20.52±0.24Ab | 0.94±0.06Ac | 65.18±4.98Aa | 14.34±0.48Ab | 1.68±0.14Ab | |
F | 5.767 | 16.391 | 7.138 | 31.229 | 9.390 | 6.241 | 6.289 | 15.614 | |
P | 0.009 | 0.000 | 0.003 | 0.000 | 0.000 | 0.004 | 0.004 | 0.000 |
表2 不同处理下土壤基本理化性质的时间变化
Table 2 Temporal changes of basic physical and chemical properties of soil under different treatments
土壤类型 | 月份 | pH | 含水率/% | 容重/(g·cm−3) | 温度/℃ | w(TN)/(g·kg−1) | w(DON)/(mg·kg−1) | w(AN)/(mg·kg−1) | w(NN)/(mg·kg−1) |
---|---|---|---|---|---|---|---|---|---|
蚁巢 | 3月 | 3.85±0.01Aa | 14.2±0.7Ac | 1.31±0.01Ab | 20.10±0.05Ac | 2.01±0.07Ab | 106.15±4.69Bb | 8.48±1.15Ab | 2.72±0.12Ab |
6月 | 3.62±0.01Ab | 31.8±0.8Ba | 1.50±0.02Ba | 24.94±0.14Aa | 6.24±0.64Ba | 297.68±28.59Ba | 40.17±3.12Ba | 10.32±0.85Ba | |
9月 | 3.76±0.02Aab | 27.8±0.8Bb | 1.03±0.01Ac | 24.10±0.06Aa | 2.89±0.09Ab | 155.67±11.53Aab | 21.45±1.79Bb | 5.50±0.62Bb | |
12月 | 3.89±0.02Ba | 21.4±0.2Bb | 1.30±0.01Bb | 21.11±0.13Bb | 1.07±0.04Bb | 126.87±13.28Bb | 17.50±0.60Ab | 1.83±0.09Ab | |
F | 5.909 | 12.753 | 18.346 | 57.905 | 6.887 | 5.767 | 6.392 | 5.971 | |
P | 0.003 | 0.000 | 0.000 | 0.000 | 0.005 | 0.003 | 0.004 | 0.003 | |
非蚁巢 | 3月 | 3.85±0.01Aa | 12.0±0.1Ab | 1.30±0.01Aa | 19.85±0.06Ab | 1.97±0.07Ab | 69.07±6.51Aa | 7.69±0.53Ab | 2.70±0.18Ab |
6月 | 3.72±0.01Bb | 27.0±0.3Aa | 1.22±0.01Aa | 24.95±0.03Aa | 2.46±0.09Aab | 127.48±8.00Aa | 25.93±1.35Aa | 6.30±0.18Aa | |
9月 | 3.77±0.01Aab | 22.9±0.2Aa | 1.17±0.02Ab | 24.12±0.02Aa | 2.82±0.07Aa | 97.40±5.70Aa | 12.64±1.01Ab | 1.84±0.06Ab | |
12月 | 3.82±0.01Aab | 15.7±0.8Ab | 1.41±0.06Aa | 20.52±0.24Ab | 0.94±0.06Ac | 65.18±4.98Aa | 14.34±0.48Ab | 1.68±0.14Ab | |
F | 5.767 | 16.391 | 7.138 | 31.229 | 9.390 | 6.241 | 6.289 | 15.614 | |
P | 0.009 | 0.000 | 0.003 | 0.000 | 0.000 | 0.004 | 0.004 | 0.000 |
土壤类型 | 月份 | pH | 含水率/% | 容重/(g·cm−3) | 温度/℃ | w(TN)/(g·kg−1) | w(DON)/(mg·kg−1) | w(AN)/(mg·kg−1) | w(NN)/(mg·kg−1) |
---|---|---|---|---|---|---|---|---|---|
蚁巢 | 0‒5 cm | 3.82±0.02Aa | 28.1±0.9Ba | 1.22±0.02Aa | 22.81±0.20Ba | 5.22±0.45Ba | 285.83±19.90Ba | 30.45±2.51Ba | 7.09±0.68Ba |
5‒10 cm | 3.79±0.01Aa | 21.3±0.6Ab | 1.27±0.02Aa | 22.24±0.18Aa | 2.24±0.07Ab | 150.77±4.23Bb | 20.29±1.16Aa | 5.52±0.40Ba | |
10‒15 cm | 3.73±0.01Aa | 19.8±0.5Ab | 1.34±0.02Aa | 22.03±0.16Aa | 1.70±0.06Bb | 78.18±4.01Ab | 14.96±0.66Aa | 2.67±0.13Aa | |
F | 6.501 | 7.553 | 9.935 | 1.561 | 9.325 | 7.454 | 9.136 | 11.859 | |
P | 0.05 | 0.004 | 0.03 | 0.225 | 0.02 | 0.004 | 0.04 | 0.001 | |
非蚁巢 | 0‒5 cm | 3.82±0.01Aa | 21.7±0.9Aa | 1.27±0.02Aa | 23.47±0.31Aa | 2.51±0.13Aa | 118.92±9.23Aa | 19.67±1.58Aa | 4.03±0.31Aa |
5‒10 cm | 3.78±0.02Aa | 19.7±0.7Aa | 1.29±0.02Aa | 22.22±0.33Aa | 2.02±0.08Aa | 96.77±6.30Aab | 14.19±1.22Aa | 3.50±0.27Aa | |
10‒15 cm | 3.77±0.01Ba | 16.8±1.1Aa | 1.52±0.80Ba | 22.01±0.32Aa | 1.61±0.13Ba | 53.66±4.18Ab | 11.59±0.91Aa | 1.86±0.23Aa | |
F | 8.452 | 6.693 | 9.893 | 0.200 | 13.965 | 9.077 | 8.745 | 7.132 | |
P | 0.004 | 0.003 | 0.002 | 0.820 | 0.001 | 0.002 | 0.003 | 0.004 |
表3 不同处理下土壤基本理化性质的垂直变化
Table 3 Spatial differences of soil basic physicochemical properties under different treatments
土壤类型 | 月份 | pH | 含水率/% | 容重/(g·cm−3) | 温度/℃ | w(TN)/(g·kg−1) | w(DON)/(mg·kg−1) | w(AN)/(mg·kg−1) | w(NN)/(mg·kg−1) |
---|---|---|---|---|---|---|---|---|---|
蚁巢 | 0‒5 cm | 3.82±0.02Aa | 28.1±0.9Ba | 1.22±0.02Aa | 22.81±0.20Ba | 5.22±0.45Ba | 285.83±19.90Ba | 30.45±2.51Ba | 7.09±0.68Ba |
5‒10 cm | 3.79±0.01Aa | 21.3±0.6Ab | 1.27±0.02Aa | 22.24±0.18Aa | 2.24±0.07Ab | 150.77±4.23Bb | 20.29±1.16Aa | 5.52±0.40Ba | |
10‒15 cm | 3.73±0.01Aa | 19.8±0.5Ab | 1.34±0.02Aa | 22.03±0.16Aa | 1.70±0.06Bb | 78.18±4.01Ab | 14.96±0.66Aa | 2.67±0.13Aa | |
F | 6.501 | 7.553 | 9.935 | 1.561 | 9.325 | 7.454 | 9.136 | 11.859 | |
P | 0.05 | 0.004 | 0.03 | 0.225 | 0.02 | 0.004 | 0.04 | 0.001 | |
非蚁巢 | 0‒5 cm | 3.82±0.01Aa | 21.7±0.9Aa | 1.27±0.02Aa | 23.47±0.31Aa | 2.51±0.13Aa | 118.92±9.23Aa | 19.67±1.58Aa | 4.03±0.31Aa |
5‒10 cm | 3.78±0.02Aa | 19.7±0.7Aa | 1.29±0.02Aa | 22.22±0.33Aa | 2.02±0.08Aa | 96.77±6.30Aab | 14.19±1.22Aa | 3.50±0.27Aa | |
10‒15 cm | 3.77±0.01Ba | 16.8±1.1Aa | 1.52±0.80Ba | 22.01±0.32Aa | 1.61±0.13Ba | 53.66±4.18Ab | 11.59±0.91Aa | 1.86±0.23Aa | |
F | 8.452 | 6.693 | 9.893 | 0.200 | 13.965 | 9.077 | 8.745 | 7.132 | |
P | 0.004 | 0.003 | 0.002 | 0.820 | 0.001 | 0.002 | 0.003 | 0.004 |
图4 蚁巢和非蚁巢土壤环境因子与碳组分及分配的主成分分析 样本量n=12; w(TOC): 总有机碳; w(MBC): 微生物生物量碳; w(EOC): 易氧化有机碳; MBC%: w(MBC)/w(TOC); EOC%; w(EOC)/w(TOC); w(TN): 全氮; w(DON): 水解氮; w(NN): 硝态氮; w(AN): 铵态氮; ST: 土壤温度; SW: 含水率; BD: 容重
Figure 4 Principal component analysis of environmental factors and carbon components in ant nests and the reference soils
[1] |
ARAUJO Y, LUIZO F J, BARROS E, 2004. Effect of earthworm addition on soil nitrogen availability, microbial biomass and litter decomposition in mesocosms[J]. Biology and Fertility of Soils, 39(3): 146-152.
DOI URL |
[2] |
ARNOLD S, FERNANDEZ I, RUSTAD L, et al., 1999. Microbial response of an acid forest soil to experimental soil warming[J]. Biology Fertility of Soils, 30(1): 239-244.
DOI URL |
[3] |
BAMMINGER C, ZAISER N, ZINSSER P, et al., 2014. Effects of biochar, earthworms, and litter addition on soil microbial activity and abundance in a temperate agricultural soil[J]. Biology and Fertility of Soils, 50(8): 1189-1200.
DOI URL |
[4] |
BONAGLIA S, BRÜCHERT V, CALLAC N, et al., 2017. Methane fluxes from coastal sediments are enhanced by macrofauna[J]. Scientific reports, 7(1): 13145.
DOI PMID |
[5] |
CAMMERAAT E, RISCH A, 2008. The impact of ants on mineral soil properties and processes at different spatial scales[J]. Journal of Applied Entomology, 132(4): 285-294.
DOI URL |
[6] |
CAMMERAAT L, WILLOTT S, COMPTON S, et al., 2002. The effects of ants' nests on the physical, chemical and hydrological properties of a rangeland soil in semi-arid Spain[J]. Geoderma, 105(1-2): 1-20.
DOI URL |
[7] |
CERDÀ A, JURGENSEN M, 2008. The influence of ants on soil and water losses from an orange orchard in eastern Spain[J]. Journal of Applied Entomology, 132(4): 306-314.
DOI URL |
[8] |
COLE B, 1994. Nest architecture in the western harvester ant, Pogonomyrmex occidentalis (Cresson)[J]. Insectes Sociaux, 41: 401-410.
DOI URL |
[9] |
DOMISCH T, OHASHI M, FINÉR L, et al., 2008. Decomposition of organic matter and nutrient mineralisation in wood ant (Formica rufa group) mounds in boreal coniferous forests of different age[J]. Biology Fertility of Soils, 44(3): 539-545.
DOI URL |
[10] |
FISHER F, GOSZ J, 1986. Effects of trenching on soil processes and properties in a New Mexico mixed-conifer forest[J]. Biology Fertility of Soils, 2(1): 35-42.
DOI URL |
[11] | PATON T R, HUMPHREYS G S, MITCHELL P, 1995. Soils: A new global view[M]. London: UCL Press. |
[12] |
HASIN S, OHASHI M, YAMADA A, et al., 2014. CO2 efflux from subterranean nests of ant communities in a seasonal tropical forest, Thailand[J]. Ecology and Evolution, 4(20): 3929-3939.
DOI URL |
[13] |
HOPCROFT P O, VALDES P J, O’CONNOR F M, et al., 2017. Understanding the glacial methane cycle[J]. Nature communications, 8(1): 1-10.
DOI |
[14] |
JURGENSEN M, FINÉR L, DOMISCH T, et al., 2008. Organic mound‐building ants: Their impact on soil properties in temperate and boreal forests[J]. Journal of Applied Entomology, 132(4): 266-275.
DOI URL |
[15] |
KHAMZINA A, LAMERS J P, MARTIUS C, 2016. Above-and belowground litter stocks and decay at a multi-species afforestation site on arid, saline soil[J]. Nutrient Cycling in Agroecosystems, 104: 187-199.
DOI URL |
[16] |
KUME T, TANAKA N, YOSHIFUJI N, et al., 2013. Soil respiration in response to year-to-year variations in rainfall in a tropical seasonal forest in northern Thailand[J]. Ecohydrology, 6(1): 134-141.
DOI URL |
[17] |
LI X R, GAO Y H, SU J Q, et al., 2014. Ants mediate soil water in arid desert ecosystems: mitigating rainfall interception induced by biological soil crusts?[J]. Applied Soil Ecology, 78: 57-64.
DOI URL |
[18] |
LOPEZ-SANGI L R P, 2013. Sequential chemical extractions of the mineral-associated soil organic matter: An integrated approach for the fractionation of organo-mineral complexes[J]. Soil Biology Biochemistry, 62: 57-67.
DOI URL |
[19] |
PÊTAL J, 1998. The influence of ants on carbon and nitrogen mineralization in drained fen soils[J]. Applied Soil Ecology, 9(1-3): 271-275.
DOI URL |
[20] |
REY A, PETSIKOS C, JARVIS P, et al., 2005. Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions[J]. European Journal of Soil Science, 56(5): 589-599.
DOI URL |
[21] |
SANDERS D, VAN VEEN F F, 2011. Ecosystem engineering and predation: The multi‐trophic impact of two ant species[J]. Journal of Animal Ecology, 80(3): 569-576.
DOI URL |
[22] |
SARCINELLI T S, SCHAEFER C E G R, FERNANDES FILHO E I, et al., 2013. Soil modification by termites in a sandy-soil vegetation in the Brazilian Atlantic rain forest[J]. Journal of Tropical Ecology, 29(5): 439-448.
DOI URL |
[23] |
WAGNER D, BROWN M J, GORDON D M, 1997. Harvester ant nests, soil biota and soil chemistry[J]. Oecologia, 112: 232-236.
DOI PMID |
[24] |
WANG C, WANG G, WU P, et al., 2017a. Effects of ant mounds on the plant and soil microbial community in an alpine meadow of Qinghai- Tibet plateau[J]. Land Degradation Development, 28(5): 1538-1548.
DOI URL |
[25] |
WANG Q K, WU A L, DONG S J, 2005. Comparative study on active soil organic matter in Chinese fir plantation and native broad-leaved forest in subtropical China[J]. Journal of Forestry Research, 16(1): 23-26.
DOI URL |
[26] |
WANG S J, WANG H, LI J H, et al., 2017b. Ants can exert a diverse effect on soil carbon and nitrogen pools in a Xishuangbanna tropical forest[J]. Soil Biology & Biochemistry, 113: 45-52.
DOI URL |
[27] |
WANG W, WU X G, HU K, et al., 2016. Understorey fine root mass and morphology in the litter and upper soil layers of three Chinese subtropical forests[J]. Plant and Soil, 406: 219-230.
DOI URL |
[28] |
WEI Z Q, WU S H, ZHOU S L, et al., 2013. Installation of impervious surface in urban areas affects microbial biomass, activity (potential C mineralisation), and functional diversity of the fine earth[J]. Soil Research, 51(1): 59-67.
DOI URL |
[29] |
WU H T, BATZER D P, YAN X M, et al., 2013. Contributions of ant mounds to soil carbon and nitrogen pools in a marsh wetland of northeastern China[J]. Applied Soil Ecology, 70(1): 9-15.
DOI URL |
[30] |
曹润, 王邵军, 陈闽昆, 等, 2019. 西双版纳热带森林不同恢复阶段土壤微生物生物量碳的变化[J]. 生态环境学报, 28(10): 1982-1990.
DOI |
CAO R, WANG S J, CHEN M K, et al., 2019. Changes of Soil Microbial Biomass Carbon along with Tropical Forest Restoration in Xishuangbanna[J]. Ecology and Environmental Sciences, 28(10): 1982-1990. | |
[31] | 陈婵, 朱小叶, 陈金磊, 等, 2022. 亚热带不同植被恢复阶段生态系统N, P储量的垂直分配格局[J]. 生态学报, 42(4): 1393-1409. |
CHEN C, ZHU X Y, CHEN J L, et al., 2022. Vertical distribution pattern of N and P storage of ecosystem at different vegetation restoration periods in the subtropical region of China[J]. Acta Ecologica Sinica, 42(4): 1393-1409. | |
[32] | 陈梦蝶, 崔晓阳, 2022. 土壤有机碳矿物固持机制及其影响因素[J]. 中国生态农业学报, 30(2): 175-183. |
CHEN M D, CUI X Y, 2022. Mechanisms and influencing factors of soil organic carbon sequestration by minerals[J]. Chinese Journal of Eco-Agriculture, 30(2): 175-183. | |
[33] | 陈小花, 陈宗铸, 雷金睿, 2022. 清澜港红树林湿地典型群落类型沉积物活性有机碳组分分布特征[J]. 生态学报, 42(11): 4572-4581. |
CHEN X H, LI Z T, LEI J R, et al., 2022. Distribution characteristices of active organic carbon components in sediments of typical community types of mangrove wetland in Qinglan Prot[J]. Acta Ecologica Sinica, 42(11): 4572-4581. | |
[34] | 陈应武, 李新荣, 苏延桂, 等, 2007. 腾格里沙漠人工植被区掘穴蚁 (Formica cunicularia) 的生态功能[J]. 生态学报, 40(2): 412-418. |
CHEN Y W, LI X R, SU Y G, et al., 2007. Study on the eco-functions of Formica cunicularia (Hymenoptera: Formicidae) in a revegetated area on the southeast fringe of Tengger Desert, north China[J]. Acta Ecologica Sinica, 27(4): 1508-1514. | |
[35] | 董星丰, 陈强, 臧淑英, 等, 2019. 温度和水分对大兴安岭多年冻土区森林土壤有机碳矿化的影响[J]. 环境科学学报, 39(12): 4269-4275. |
DONG X F, CHEN Q, ZANG S Y, et al., 2019. Effect of temperature and moisture on soil organic carbon mineralization of predominantly permafrost forest in the Great Hing’an Mountains[J]. Acta Scientiae Circumstantiae, 39(12): 4269-4275. | |
[36] | 范跃新, 杨玉盛, 杨智杰, 等, 2013. 中亚热带常绿阔叶林不同演替阶段土壤活性有机碳含量及季节动态[J]. 生态学报, 33(18): 5751-5759. |
FAN Y X, YANG Y S, YANG Z J, et al., 2013. Seasonal dynamics and content of soil labile organic carbon of mid-subtropical evergreen broadleaved forest during natural succession[J]. Acta Ecologica Sinica, 33(18): 5751-5759.
DOI URL |
|
[37] | 樊宇翔, 杨波, 李艳梅, 等, 2023. 蚂蚁活动对小果野芭蕉群落土壤呼吸季节动态的影响[J]. 浙江农林大学学报, 40(3): 502-510. |
FAN Y X, YANG B, LI Y M, et al., 2023. Effects of ant activities on seasonal dynamics of soil respiration in the Musa acuminata[J]. Journal of Zhejiang A & F University, 40(3): 502-510. | |
[38] | 李昌珍, 2017. 黄土丘陵区人工林土壤氮素积累, 转化对土壤碳库的影响[M]. 杨凌: 西北农林科技大学. |
LI C Z, 2017. Soil nitrogen accumulation and transformation impact on soil carbon P001 under different plantations in the Loess Hilly Region of China[M]. Yangling: Northwest A & F University. | |
[39] |
李少辉, 王邵军, 张哲, 等, 2019. 蚂蚁筑巢对西双版纳热带森林土壤易氧化有机碳时空动态的影响[J]. 应用生态学报, 30(2): 413-419.
DOI |
LI S H, WANG S J, ZHANG Z, et al., 2019. Effects of ant nesting on the spatiotemporal dynamics of soil easily oxidized organic carbon in Xishuangbanna tropical forests, China[J]. Chinese Journal of Applied Ecology, 30(2): 413-419. | |
[40] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社: 69-173. |
LU R S, 2000. Analysis method of agrochemical chemistry in soil[M]. Beijing: China Agriculture Science and Technique Press: 69-173. | |
[41] | 莫彬, 曹建华, 徐祥明, 等, 2006. 岩溶山区不同土地利用方式对土壤活性有机碳动态的影响[J]. 生态环境, 15(6): 1224-1230. |
MO B, CAO J H, XU X M, et al., 2006. Changes of soil active organic carbon under different land use types in karst area[J]. Ecology and Environment, 15(6): 1224-1230. | |
[42] | 唐国勇, 黄道友, 童成立, 等, 2006. 红壤丘陵景观单元土壤有机碳和微生物生物量碳含量特征[J]. 应用生态学报, 17(3): 429-433. |
TANG G Y, HUANG D Y, TONG C L, et al., 2006. Characteristics of soil organic carbon and microbial biomass carbon in hilly red soil region[J]. Chinese Journal of Applied Ecology, 17(3): 429-433. | |
[43] |
王邵军, 王红, 李霁航, 2016. 热带森林不同演替阶段蚂蚁巢穴的分布特征及其影响因素[J]. 生物多样性, 24(8): 916-921.
DOI |
WANG S J, WANG H, LI J H, 2016. Distribution characteristics of ant mounds and correlating factors across different succession stages of tropical forests in Xishuangbanna[J]. Biodiversity Science, 24(8): 916-921.
DOI |
|
[44] |
肖博, 王邵军, 解玲玲, 等, 2023. 蚂蚁筑巢定居活动对热带森林土壤氮库及组分分配的影响[J]. 生态环境学报, 32(6): 1026-1036.
DOI |
XIAO B, WANG S J, XIE L L, et al., 2023, Effect of ant nesting activity on soil nitrogen component allocation in the Xishuangbanna tropical forests[J]. Ecology and Environmental Sciences, 32(6): 1026-1036. | |
[45] |
张昆凤, 王邵军, 王平, 等, 2023. 蚂蚁筑巢对热带次生林土壤N2O排放季节动态的影响[J]. 应用生态学报, 34(5): 1218-1224.
DOI |
ZHANG K F, WANG S J, WANG P, et al., 2023, Effects of ant nesting on seasonal dynamics of soil N2O emission in a secondary tropical forest[J]. Chinese Journal of Applied Ecology, 34(5): 1218-1224 | |
[46] |
张雪慧, 张仲胜, 武海涛, 2020. 蚂蚁扰动对土壤有机碳循环过程的影响研究进展[J]. 应用生态学报, 31(12): 4301-4311.
DOI |
ZHANG X H, ZHANG Z S, WU H T, 2020. Effects of ant disturbance on soil organic carbon cycle: A review[J]. Chinese Journal of Applied Ecology, 31(12): 4301-4311. |
[1] | 肖博, 王邵军, 解玲玲, 王郑钧, 郭志鹏, 张昆凤, 张路路, 樊宇翔, 郭晓飞, 罗双, 夏佳慧, 李瑞, 兰梦杰, 杨胜秋. 蚂蚁筑巢定居活动对热带森林土壤氮库及组分分配的影响[J]. 生态环境学报, 2023, 32(6): 1026-1036. |
[2] | 陈丽娟, 周文君, 易艳芸, 宋清海, 张一平, 梁乃申, 鲁志云, 温韩东, MOHD Zeeshan, 沙丽清. 云南哀牢山亚热带常绿阔叶林土壤CH4通量特征[J]. 生态环境学报, 2022, 31(5): 949-960. |
[3] | 温智峰, 魏识广, 李林, 叶万辉, 练琚愉. 南亚热带常绿阔叶林植物不同分类水平上的空间分布格局及空间关联[J]. 生态环境学报, 2022, 31(3): 440-450. |
[4] | 杨世福, 马玲玲, 陈芸芝, 唐旭利. 鼎湖山季风常绿阔叶林演替系列土壤细菌群落的变化特征[J]. 生态环境学报, 2022, 31(12): 2275-2282. |
[5] | 张天霖, 蔡章林, 赵厚本, 吴仲民, 周光益, 邱治军. 13C脉冲标记法研究非正常凋落物对土壤有机碳的激发效应[J]. 生态环境学报, 2021, 30(9): 1797-1804. |
[6] | 王一荃, 周璋, 李意德, 陈德祥, 张涛, 杨繁. 不同热带森林空气负离子浓度评价研究[J]. 生态环境学报, 2021, 30(5): 898-906. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||