生态环境学报 ›› 2022, Vol. 31 ›› Issue (12): 2310-2319.DOI: 10.16258/j.cnki.1674-5906.2022.12.005
朱梦圆1,2(), 宋艳宇1,*(
), 高思齐1,2, 宫超1, 刘桢迪1,2, 马秀艳1, 袁佳宝1,2, 杨旭3
收稿日期:
2022-04-21
出版日期:
2022-12-18
发布日期:
2023-02-15
通讯作者:
*宋艳宇(1981年生),女,研究员,研究方向为湿地与全球变化。E-mail: songyanyu@iga.ac.cn作者简介:
朱梦圆(2000年生),女,硕士研究生,研究方向为湿地生态系统碳氮循环。E-mail: zhumengyuan@iga.ac.cn
基金资助:
ZHU Mengyuan1,2(), SONG Yanyu1,*(
), GAO Siqi1,2, GONG Chao1, LIU Zhendi1,2, MA Xiuyan1, YUAN Jiabao1,2, YANG Xu3
Received:
2022-04-21
Online:
2022-12-18
Published:
2023-02-15
摘要:
土壤微生物在植被养分积累和释放过程中起着关键作用,对湿地生态系统碳循环具有重要意义。为明确三江平原不同植被类型湿地土壤微生物群落代谢多样性的差异,选取三江平原甜茅(Glyceria acutiflora subsp. japonica)、薹草(Carex lasiocarpa)、小叶章(Deyeuxia purpurea)、水稻(Oryza sativa)、芦苇(Phragmites australis)5种不同植被类型湿地为研究对象,基于Biolog-Eco技术,分析不同植被类型湿地土壤微生物碳源代谢多样性特征。结果表明,不同植被类型湿地土壤微生物的代谢活性(AWCD)随培养时间的延长逐渐增大,在48 h内微生物利用碳源的能力较弱,48—168 h期间微生物代谢活性快速增加,168 h后步入平稳期。其中甜茅湿地0—15 cm土壤微生物的代谢活性最高,AWCD值达到0.82。土壤微生物Shannon丰富度指数(H′)、Shannon-evenness均匀度指数(E)、Simpson优势度指数(D)和McIntosh多样性指数(U)均表现为甜茅湿地最高,芦苇湿地最低。三江平原不同植被类型湿地土壤微生物对碳源利用能力表现出差异,甜茅湿地、薹草湿地和水稻湿地对氨基酸类和多聚物类碳源具有更高的利用能力,小叶章湿地更倾向于利用氨基酸类和有机酸类碳源,芦苇湿地对氨基酸类和胺类碳源的利用能力更高。相关分析表明,不同植被类型湿地土壤微生物代谢活性和Shannon指数、Shannon-evenness指数和McIntosh指数均与土壤微生物量碳含量呈显著正相关关系,土壤微生物Shannon指数、Shannon-evenness指数、Simpson指数与土壤pH值呈显著正相关关系,说明湿地植被类型和土壤活性碳含量是影响土壤微生物活性和多样性的重要因子,而且土壤微生物多样性与土壤pH密切相关。
中图分类号:
朱梦圆, 宋艳宇, 高思齐, 宫超, 刘桢迪, 马秀艳, 袁佳宝, 杨旭. 三江平原不同植被类型湿地土壤微生物碳源代谢多样性特征[J]. 生态环境学报, 2022, 31(12): 2310-2319.
ZHU Mengyuan, SONG Yanyu, GAO Siqi, GONG Chao, LIU Zhendi, MA Xiuyan, YUAN Jiabao, YANG Xu. Diversity Characteristics of Soil Microbial Carbon Source Metabolism in Wetlands with Different Vegetation Types in the Sanjiang Plain[J]. Ecology and Environment, 2022, 31(12): 2310-2319.
图2 不同植被类型湿地土壤微生物多样性指数 不同大写字母表示不同植被类型下0—15 cm土壤微生物多样性指数差异显著(P<0.05);小写字母表示不同植被类型下15—30 cm土壤微生物多样性指数差异显著(P<0.05);同一样点两个土层之间的显著差异由* P<0.05和** P<0.01表示,n=3 甜茅G. acutiflora subsp. japonica;薹草C. lasiocarpa;小叶章D. purpurea;水稻O. sativa;芦苇P. australis。下同
Figure 2 Soil microbial diversity index in wetlands with different vegetation types Different uppercase letters indicate significant differences in soil microbial diversity indices of 0?15 cm under different vegetation types (P<0.05); lowercase letters indicate significant differences in soil microbial diversity indices of 15?30 cm under different vegetation types (P<0.05); and significant differences between two soil layers at the same site are indicated by * P<0.05 and ** P<0.01, n=3 The same below
图3 不同植被类型湿地土壤微生物碳源利用程度 不同大写字母表示不同植被类型下0—15 cm土壤微生物碳源利用率差异显著(P<0.05);小写字母表示不同植被类型下15—30 cm土壤微生物碳源利用率差异显著(P<0.05);同一样点两个土层之间的显著差异由* P<0.05和** P<0.01表示,n=3
Figure 3 Degree of soil microbial carbon source utilization in wetlands with different vegetation types Different uppercase letters indicate that the carbon source utilization efficiency of 0?15 cm soil microorganisms under different vegetation types is significant (P<0.05); lowercase letters indicate that the carbon source utilization efficiency of 15?30 cm under different vegetation types is significantly different (P<0.05); and significant differences between two soil layers at the same site are indicated by * P<0.05 and ** P<0.01, n=3
图4 不同植被类型湿地土壤理化性质 不同大写字母表示不同植被类型下0—15 cm土壤理化性质差异显著(P<0.05);小写字母表示不同植被类型下15—30 cm土壤理化性质差异显著(P<0.05);同一样点两个土层之间的显著差异由* P<0.05和** P<0.01表示,n=3
Figure 4 Soil physicochemical properties in wetlands with different vegetation types Different uppercase letters indicate that the physicochemical properties of soils under 0?15 cm under different vegetation types are significantly different (P<0.05); lowercase letters indicate that the physicochemical properties of soil under 15?30 cm under different vegetation types are significantly different (P<0.05); and significant differences between two soil layers at the same site are indicated by * P<0.05 and ** P<0.01, n=3
图5 不同植被类型湿地土壤微生物代谢活性、群落多样性指数与土壤理化性质相关性分析 AWCD:微生物平均颜色变化率 Average well color development;H′:Shannon指数 Shannon index;E:Shannon-evenness指数 Shannon-evenness index;D:Simpson指数 Simpson index;U:McIntosh指数 McIntosh index;MBC:微生物量碳 Microbial biomass carbon;DOC:可溶性有机碳Dissolved organic carbon;TC:总碳Total carbon;TN:全氮Total nitrogen;TP:总磷Total phosphorus;pH:pH值;MC:土壤含水率Soil moisture content 图中不同颜色、不同大小的圆表示相关系数的大小。数字表示相关系数,*表示P<0.05,**P<0.01
Figure 5 Correlation analysis of soil microbial community diversity index and metabolic activity index and soil physicochemical properties in wetlands with different vegetation types Circles of different colors and sizes in the plot represent the size of the correlation coefficients. The number indicates the correlation coefficient, *indicates P<0.05, **P<0.01
[1] |
AMINI S, GHADIRI H, CHEN C R, et al., 2016. Salt-affected soils, reclamation, carbon dynamics, and biochar: A review[J]. Journal of Soils and Sediments, 16(3): 939-953.
DOI URL |
[2] |
BANNISTER J W, CLAIRMONT L K, STEVENS K J, et al., 2021. Exposure to elevated nutrient load results in structural and functional changes to microbial communities associated with riparian wetland plants Phalaris arundinaceae and Veronica anagallis-aquatica [J]. Rhizosphere, 18: 100350.
DOI URL |
[3] |
BELL T, NEWMAN J A, SILVERMAN B W, et al., 2005. The contribution of species richness and composition to bacterial services[J]. Nature, 436(7054): 1157-1160.
DOI URL |
[4] |
CLAIRMONT L K, STEVENS K J, SLAWSON R M, 2019. Site-specific differences in microbial community structure and function within the rhizosphere and rhizoplane of wetland plants is plant species dependent[J]. Rhizosphere, 9: 56-68.
DOI URL |
[5] |
FIERER N, JACKSON R B, 2006. The diversity and biogeography of soil bacterial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 103(3): 626-631.
DOI PMID |
[6] |
GLANVILLE H C, HILL P W, MACCARONE L D, et al., 2012. Temperature and water controls on vegetation emergence, microbial dynamics, and soil carbon and nitrogen fluxes in a high Arctic tundra ecosystem[J]. Functional Ecology, 26(6): 1366-1380.
DOI URL |
[7] | KOWALCHUK G A, HEIDELBERG J F, BAILEY M J, 2007. The ISME journal: multidisciplinary journal of microbial ecology[J]. The International Society for Microbial Ecology Journal, 1(1): 1-3. |
[8] |
LIANG J, LU Z, YU Z D, et al., 2016. Effects of leaf litter extraction fluid from dominant forest tree species on functional characteristics of soil microbial communities[J]. Journal of Forestry Research, 27(1): 81-90.
DOI URL |
[9] |
LIANG W, WU Z B, CHENG S P, et al., 2003. Roles of substrate microorganisms and urease activities in wastewater purification in a constructed wetland system[J]. Ecological Engineering, 21(2): 191-195.
DOI URL |
[10] |
LIU B R, JIA G M, CHEN J, et al., 2006. A review of methods for studying microbial diversity in soils[J]. Pedosphere, 16(1): 18-24.
DOI URL |
[11] |
MIETHLING R, WIELAND G, BACKHAUS H, et al., 2000. Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33[J]. Microbial Ecology, 40(1): 43-56.
DOI PMID |
[12] |
NAYYAR A, HAMEL C, LAFOND G, et al., 2009. Soil microbial quality associated with yield reduction in continuous-pea[J]. Applied Soil Ecology, 43(1): 115-121.
DOI URL |
[13] |
NEMETH I, MOLNAR S, VASZITA E, et al., 2021. The Biolog EcoPlate™ technique for assessing the effect of metal oxide nanoparticles on freshwater microbial communities[J]. Nanomaterials, 11(7): 1777.
DOI URL |
[14] |
PANG D B, WANG G Z, LIU Y G, et al., 2019. The impacts of vegetation types and soil properties on soil microbial activity and metabolic diversity in subtropical forests[J]. Forests, 10(6): 497-512.
DOI URL |
[15] |
SAGGAR S, MCINTOSH P D, HEDLEY C B, et al., 1999. Changes in soil microbial biomass, metabolic quotient, and organic matter turnover under Hieracium (H. pilosella L.)[J]. Biology and Fertility of Soils, 30(3): 232-238.
DOI URL |
[16] | SARAH R S, CORY C C, ERAN H, et al., 2009. Functional shifts in unvegetated, perhumid, recently-deglaciated soils do not correlate with shifts in soil bacterial community composition[J]. Journal of Microbiology (Seoul, Korea), 47(6): 673-681. |
[17] |
SHI F X, SONG C C, ZHANG X H, et al., 2015. Plant zonation patterns reflected by the differences in plant growth, biomass partitioning and root traits along a water level gradient among four common vascular plants in freshwater marshes of the Sanjiang Plain, Northeast China[J]. Ecological Engineering, 81: 158-164.
DOI URL |
[18] |
STRICKLAND M S, ROUSK J, 2010. Considering fungal: bacterial dominance in soils - Methods, controls, and ecosystem implications[J]. Soil Biology and Biochemistry, 42(9): 1385-1395.
DOI URL |
[19] |
TENG Z, FAN W, WANG H L, et al., 2020. Monitoring soil microorganisms with community-level physiological profiles using Biolog EcoPlates™ in Chaohu Lakeside Wetland, East China[J]. Eurasian Soil Science, 53(8): 1142-1153.
DOI URL |
[20] |
WENG X H, LI J Y, SUI X, et al., 2021. Soil microbial functional diversity responses to different vegetation types in the Heilongjiang Zhongyangzhan Black-billed Capercaillie Nature Reserve[J]. Annals of Microbiology, 71(1): 26.
DOI URL |
[21] |
YIN R, DENG H, WANG H I, et al., 2014. Vegetation type affects soil enzyme activities and microbial functional diversity following re-vegetation of a severely eroded red soil in sub-tropical China[J]. Catena, 115: 96-103.
DOI URL |
[22] |
YOSHITAKE S, FUJIYOSHI M, WATANABE K, et al., 2013. Successional changes in the soil microbial community along a vegetation development sequence in a subalpine volcanic desert on Mount Fuji, Japan[J]. Plant and Soil, 364(1-2): 261-272.
DOI URL |
[23] |
ZHANG Z, WANG H, ZHOU J Z, et al., 2015. Redox potential and microbial functional gene diversity in wetland sediments under simulated warming conditions: implications for phosphorus mobilization[J]. Hydrobiologia, 743(1): 221-235.
DOI URL |
[24] | 白江珊, 陈方圆, 唐浩然, 等, 2021. 模拟水深和氮添加对三江平原湿地植物功能性状的影响[J]. 应用与环境生物学报, 27(1): 38-45. |
BAI J S, CHEN F Y, TANG H R, et al., 2021. Effects of simulated water depth and nitrogen addition on functional traits of wetland plants in Sanjiang Plain[J]. Chinese Journal of Applied & Environmental Biology, 27(1): 38-45. | |
[25] | 陈法霖, 郑华, 欧阳志云, 等, 2011. 土壤微生物群落结构对凋落物组成变化的响应[J]. 土壤学报, 48(3): 603-611. |
CHEN F L, ZHENG H, OUYANG Z Y, et al., 2011. Response of soil microbial community structure to changes in litter composition[J]. Acta Pedologica Sinica, 48(3): 603-611. | |
[26] |
陈奇, 丁雪丽, 张彬, 2021. 三江平原湿地开垦对土壤氨基糖积累特征的影响[J]. 应用生态学报, 32(12): 4247-4253.
DOI |
CHEN Q, DING X L, ZHANG B, 2021. Effects of wetland reclamation on amino sugar accumulation in soils of the Sanjiang Plain[J]. Chinese Journal of Applied Ecology, 32(12): 4247-4253.
DOI |
|
[27] | 付裕, 黄康祥, 蔡锦枫, 等, 2022. 三江平原沼泽湿地4种优势植物空间格局对不同水位环境的响应[J/OL]. 生物多样性, 30(3): 1-11. |
FU Y, HUANG K X, CAI J F, et al., 2022. Responses in spatial pattern of four dominant species to different water level environments in a freshwater marsh in the Sanjiang Plain[J/OL]. Biodiversity Science, 30(3): 1-11. | |
[28] | 宫超, 宋长春, 谭稳稳, 等, 2015. 三江平原沼泽湿地垦殖对土壤微生物学性质影响研究[J]. 生态环境学报, 24(6): 972-977. |
GONG C, SONG C C, TAN W W, et al., 2015. Effects of Marshland Reclamation on Soil Microbial Properties in the Sanjiang Plain, Northeast China[J]. Ecology and Environmental Sciences, 24(6): 972-977. | |
[29] | 顾国海, 李梦莎, 2018. 滨海不同湿地类型土壤微生物功能多样性[J]. 江苏农业科学, 46(24): 355-358. |
GU G H, LI M S, 2018. Soil microbial functional diversity of different wetland types in the coast[J]. Jiangsu Agricultural Sciences, 46(24): 355-358. | |
[30] | 李飞, 刘振恒, 贾甜华, 等, 2018. 高寒湿地和草甸退化及恢复对土壤微生物碳代谢功能多样性的影响[J]. 生态学报, 38(17): 6006-6015. |
LI F, LIU Z H, JIA T H, et al., 2018. Functional diversity of soil microbial community carbon metabolism with the degradation and restoration of alpine wetlands and meadows[J]. Acta Ecologica Sinica, 38(17): 6006-6015. | |
[31] | 李琦, 赵琬婧, 王瑜, 等, 2021. 三江平原沼泽湿地典型湿地植物对重金属的富集效应[J]. 湿地科学与管理, 17(2): 9-13. |
LI Q, ZHAO W J, WANG Y, et al., 2021. Enrichment effect of typical wetland plants on heavy metals in marshes of Sanjiang Plain[J]. Wetland Science & Management, 17(2): 9-13. | |
[32] | 李艳, 2019. 增温和氮沉降对中亚热带杉木林土壤氨基糖和木质素的影响[D]. 福州: 福建师范大学. |
LI Y, 2019. Effects of warming and nitrogen deposition on soil amino sugar and lignin of Cunninghamia lanceolata in mid-subtropical[D]. Fuzhou: Fujian Normal University. | |
[33] | 倪惠菁, 苏文会, 范少辉, 等, 2019. 养分输入方式对森林生态系统土壤养分循环的影响研究进展[J]. 生态学杂志, 38(3): 863-872. |
NI H J, SU W H, FAN S H, et al., 2019. Responses of forest soil nutrient cycling to nutrient input modes: A review[J]. Chinese Journal of Ecology, 38(3): 863-872. | |
[34] | 施建敏, 马克明, 赵景柱, 等, 2010. 三江平原残存湿地斑块特征及其对物种多样性的影响[J]. 生态学报, 30(24): 6683-6690. |
SHI J M, MA K M, ZHAO J Z, et al., 2010. The patch characteristics of wetland remnants in the Sanjiang Plain and its influence on plant species richness[J]. Acta Ecologica Sinica, 30(24): 6683-6690. | |
[35] | 宋长春, 宋艳宇, 王宪伟, 等, 2018. 气候变化下湿地生态系统碳、氮循环研究进展[J]. 湿地科学, 16(3): 424-431. |
SONG C C, SONG Y Y, WANG X W, et al., 2018. Advance in researches on carbon and nitrogen cycles in wetland ecosystems under climate change[J]. Wetland Science, 16(3): 424-431. | |
[36] | 万忠梅, 宋长春, 杨桂生, 等, 2009. 三江平原湿地土壤活性有机碳组分特征及其与土壤酶活性的关系[J]. 环境科学学报, 29(2): 406-412. |
WAN Z M, SONG C C, YANG G S, et al., 2009. The active soil organic carbon fraction and its relationship with soil enzyme activity in different types of marshes in the Sanjiang Plain[J]. Acta Scientiae Circumstantiae, 29(2): 406-412. | |
[37] | 王巍琦, 杨磊, 程志博, 等, 2019. 干旱区不同类型盐碱地土壤微生物碳源代谢活性研究[J]. 干旱区资源与环境, 33(6): 158-166. |
WANG W Q, YANG L, CHENG Z B, et al., 2019. Study on soil microbial biomass carbon source metabolism in different types of sodic saline-alkali soil in arid area[J]. Journal of Arid Land Resources and Environment, 33(6): 158-166. | |
[38] | 吴兰, 程家劲, 贺勇, 等, 2020. 基于Biolog-Eco法对鄱阳湖不同湿地类型下土壤微生物功能多样性[J]. 南昌大学学报 (理科版), 44(6): 585-592. |
WU L, CHENG J J, HE Y, et al., 2020. Functional diversity of soil microbial community under different wetland types in Poyang Lake[J]. Journal of Nanchang University (Natural Science), 44(6): 585-592. | |
[39] | 夏品华, 寇永珍, 喻理飞, 2015. 喀斯特高原退化湿地草海土壤微生物群落碳源代谢活性研究[J]. 环境科学学报, 35(8): 2549-2555. |
XIA P H, KOU Y Z, YU L F, 2015. Carbon metabolic soil microbial community in Caohai Karst Plateau degraded wetland: A case study in southwest China[J]. Acta Scientiae Circumstantiae, 35(8): 2549-2555. | |
[40] | 张爱娣, 郑仰雄, 吴碧珊, 等, 2020. 滨海湿地土壤微生物群落多样性及其影响因素[J]. 水土保持研究, 27(3): 8-14, 22. |
ZHANG A D, ZHENG Y X, WU B S, et al., 2020. Soil microbial community diversity and its influencing factors in coastal wetland[J]. Research of Soil and Water Conservation, 27(3): 8-14, 22. | |
[41] | 张金波, 宋长春, 杨文燕, 2005. 三江平原沼泽湿地开垦对表土有机碳组分的影响[J]. 土壤学报, 42(5): 155-157. |
ZHANG J B, SONG C C, YANG W Y, 2005. Effect of cultivation on organic carbon composition in a histosol in the Sanjiang Plain, China[J]. Acta Pedologica Sinica, 42(5): 155-157. | |
[42] | 张新生, 卢杰, 张新军, 2022. 土壤微生物与植被互作的研究进展[J]. 黑龙江农业科学 (1): 88-93. |
ZHANG X S, LU J, ZHANG X J, 2022. Research progress on interaction between soil microorganisms and vegetation[J]. Heilongjiang Agricultural Sciences (1): 88-93. | |
[43] | 赵先丽, 程海涛, 吕国红, 等, 2006. 土壤微生物生物量研究进展[J]. 气象与环境学报, 22(4): 68-72. |
ZHAO X L, CHENG H T, LÜ G H, et al., 2006. Advances in soil microbial biomass research[J]. Journal of Meteorology and Environment, 22(4): 68-72. | |
[44] | 郑华, 欧阳志云, 王效科, 等, 2004. 不同森林恢复类型对土壤微生物群落的影响[J]. 应用生态学报, 15(11): 2019-2024. |
ZHENG H, OUYANG Z Y, WANG X K, et al., 2004. Effects of forest restoration patterns on soil microbial communities[J]. Chinese Journal of Applied Ecology, 15(11): 2019-2024. | |
[45] | 左平, 欧志吉, 姜启吴, 等, 2014. 江苏盐城原生滨海湿地土壤中的微生物群落功能多样性分析[J]. 南京大学学报 (自然科学), 50(5): 715-722. |
ZUO P, OU Z J, JIANG Q W, et al., 2014. Function diversity of soil microbial communities in original coastal wetlands, Yancheng, Jiangsu Province[J]. Journal of Nanjing University (Natural Sciences), 50(5): 715-722. |
[1] | 姜永伟, 丁振军, 袁俊斌, 张峥, 李杨, 问青春, 王业耀, 金小伟. 辽宁省主要河流底栖动物群落结构及水质评价研究[J]. 生态环境学报, 2023, 32(5): 969-979. |
[2] | 唐海明, 石丽红, 文丽, 程凯凯, 李超, 龙泽东, 肖志武, 李微艳, 郭勇. 长期施肥对双季稻田根际土壤氮素的影响[J]. 生态环境学报, 2023, 32(3): 492-499. |
[3] | 李威闻, 黄金权, 齐瑜洁, 刘小岚, 刘纪根, 毛治超, 高绣纺. 土壤侵蚀条件下土壤微生物生物量碳含量变化及其影响因素的Meta分析[J]. 生态环境学报, 2023, 32(1): 47-55. |
[4] | 喻阳华, 吴银菇, 宋燕平, 李一彤. 不同林龄顶坛花椒林地土壤微生物浓度与生物量化学计量特征[J]. 生态环境学报, 2022, 31(6): 1160-1168. |
[5] | 孙建波, 畅文军, 李文彬, 张世清, 李春强, 彭明. 香蕉不同生育期根际微生物生物量及土壤酶活的变化研究[J]. 生态环境学报, 2022, 31(6): 1169-1174. |
[6] | 何瑞, 蒋然, 杨芳, 张心凤, 林键銮, 朱小平, 彭松耀. 茂名近岸海域中、小型浮游动物群落特征及其与环境因子的关系[J]. 生态环境学报, 2022, 31(1): 142-150. |
[7] | 刘秉儒. 土壤微生物呼吸热适应性与微生物群落及多样性对全球气候变化响应研究[J]. 生态环境学报, 2022, 31(1): 181-186. |
[8] | 葛应兰, 孙廷. 马铃薯根际与非根际土壤微生物群落结构及多样性特征[J]. 生态环境学报, 2020, 29(1): 141-148. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||