生态环境学报 ›› 2022, Vol. 31 ›› Issue (2): 318-325.DOI: 10.16258/j.cnki.1674-5906.2022.02.012
郝小雨1(), 王晓军1, 高洪生1, 毛明艳2, 孙磊1, 马星竹1, 周宝库1, 迟凤琴1, 李伟群1,3,*(
)
收稿日期:
2021-08-28
出版日期:
2022-02-18
发布日期:
2022-04-14
通讯作者:
*李伟群(1980年生),男,副研究员,主要从事土壤肥料研究。E-mail: lwqun@126.com作者简介:
郝小雨(1981年生),男,副研究员,主要从事农田养分循环研究。E-mail: xiaoyuhao1981@sina.com
基金资助:
HAO Xiaoyu1(), WANG Xiaojun1, GAO Hongsheng1, MAO Mingyan2, SUN Lei1, MA Xingzhu1, ZHOU Baoku1, CHI Fengqin1, LI Weiqun1,3,*(
)
Received:
2021-08-28
Online:
2022-02-18
Published:
2022-04-14
摘要:
明确松嫩平原不同秸秆还田方式下的温室气体排放和碳足迹特征,对于制订本地区固碳减排策略、发展低碳农业和保障农业可持续发展具有积极作用。该研究基于松嫩平原黑土秸秆还田定位试验,在大豆-玉米-玉米典型轮作模式下,2013—2015年监测不同秸秆还田方式下(秸秆不还田旋耕CK、秸秆深施还田DSR、秸秆覆盖免耕SC)农田N2O和CH4排放变化,利用生命周期法估算农资投入和田间操作引起的直接或间接碳排放量,分析碳足迹特征。结果表明,在松嫩平原大豆-玉米-玉米轮作模式下,秸秆深施还田和秸秆覆盖免耕不影响土壤N2O和CH4排放。土壤温室气体排放、氮肥生产、磷肥生产和田间耕作是影响农田碳足迹的主要贡献因子,占农田碳足迹总量的90%左右。2013—2015年秸秆覆盖免耕处理农田碳足迹最低,较秸秆不还田旋耕和秸秆深施还田处理分别降低4.5%和5.1%,原因是秸秆覆盖免耕措施减少机械燃油产生的碳排放。秸秆深施还田和秸秆覆盖免耕处理可以提高大豆和玉米产量,平均分别增产5.1%和5.5%。综合而言,在松嫩平原大豆-玉米-玉米轮作体系下,秸秆覆盖免耕可以降低农田碳足迹并可提高大豆、玉米产量,是较适宜的耕作方式。
中图分类号:
郝小雨, 王晓军, 高洪生, 毛明艳, 孙磊, 马星竹, 周宝库, 迟凤琴, 李伟群. 松嫩平原不同秸秆还田方式下农田温室气体排放及碳足迹估算[J]. 生态环境学报, 2022, 31(2): 318-325.
HAO Xiaoyu, WANG Xiaojun, GAO Hongsheng, MAO Mingyan, SUN Lei, MA Xingzhu, ZHOU Baoku, CHI Fengqin, LI Weiqun. Estimation of Greenhouse Gas Emission and Carbon Footprint of Farmland under Different Straw Returning Methods in Songnen Plain[J]. Ecology and Environment, 2022, 31(2): 318-325.
图1 不同处理温室气体排放特征 图中箭头表示施肥时期
Figure 1 Characteristics of greenhouse gas emission under different treatments The arrow in the figure indicated the fertilization period
处理 Treatment | 2013 | 2014 | 2015 | 平均 | ||||
---|---|---|---|---|---|---|---|---|
N2O/(kg∙hm-2) | CH4/(kg∙hm-2) | N2O/(kg∙hm-2) | CH4/(kg∙hm-2) | N2O/(kg∙hm-2) | CH4/(kg∙hm-2) | N2O/(kg∙hm-2) | CH4/(kg∙hm-2) | |
CK | 0.52±0.05a | -0.11±0.02a | 0.86±0.09a | -0.12±0.02a | 0.91±0.06a | -0.11±0.02a | 0.76±0.02a | -0.11±0.02a |
DSR | 0.51±0.03a | -0.10±0.02a | 0.83±0.05a | -0.11±0.01a | 0.87±0.05a | -0.11±0.03a | 0.74±0.19a | -0.11±0.02a |
SC | 0.55±0.05a | -0.12±0.03a | 0.82±0.07a | -0.13±0.03a | 0.81±0.06b | -0.11±0.03a | 0.73±0.14a | -0.12±0.03a |
表1 不同处理土壤温室气体排放量
Table 1 Cumulative N2O and CH4 emissions under different treatments
处理 Treatment | 2013 | 2014 | 2015 | 平均 | ||||
---|---|---|---|---|---|---|---|---|
N2O/(kg∙hm-2) | CH4/(kg∙hm-2) | N2O/(kg∙hm-2) | CH4/(kg∙hm-2) | N2O/(kg∙hm-2) | CH4/(kg∙hm-2) | N2O/(kg∙hm-2) | CH4/(kg∙hm-2) | |
CK | 0.52±0.05a | -0.11±0.02a | 0.86±0.09a | -0.12±0.02a | 0.91±0.06a | -0.11±0.02a | 0.76±0.02a | -0.11±0.02a |
DSR | 0.51±0.03a | -0.10±0.02a | 0.83±0.05a | -0.11±0.01a | 0.87±0.05a | -0.11±0.03a | 0.74±0.19a | -0.11±0.02a |
SC | 0.55±0.05a | -0.12±0.03a | 0.82±0.07a | -0.13±0.03a | 0.81±0.06b | -0.11±0.03a | 0.73±0.14a | -0.12±0.03a |
项目 Item | 分项 Subitem | CK | DSR | SC |
---|---|---|---|---|
农资投入 Agricultural material inputs | 氮肥 N fertilizer/(kg∙hm-2) | 274.2 | 274.2 | 274.2 |
磷肥 P fertilizer/(kg∙hm-2) | 207 | 207 | 207 | |
钾肥 K fertilizer/(kg∙hm-2) | 90 | 90 | 90 | |
大豆种子 Soybean seed/(kg∙hm-2) | 75 | 75 | 75 | |
玉米种子 Maize seed/(kg∙hm-2) | 45 | 45 | 45 | |
除草剂 Herbicide/(L∙hm-2) | 3.6 | 3.6 | 3.6 | |
杀虫剂 Pesticide/(L∙hm-2) | 4.5 | 4.5 | 4.5 | |
柴油消耗 Diesel consumption/ (L∙hm-2) | 秸秆移出 Straw removal | 18.0 | — | — |
灭茬 Stubble cleaning | 27.0 | 27.0 | — | |
旋地 Rotary tillage | 54.0 | — | — | |
翻地 Plough tillage | — | 29.3 | — | |
粑地 Harrowing | — | 27.0 | — | |
起垄 Ridging | 22.5 | 22.5 | — | |
轧地 Rolling | 18.0 | 18.0 | 18.0 | |
施肥 Fertilization | 18.0 | 18.0 | 18.0 | |
播种 Seeding | 18.0 | 18.0 | 27.0 | |
喷农药 Spraying pesticide | 36.0 | 36.0 | 36.0 | |
收获 Harvest | 31.5 | 31.5 | 31.5 | |
粉碎 Straw chopping | — | 67.5 | 67.5 |
表2 2013—2015年轮作周期内不同处理农资投入量
Table 2 Agricultural inputs of different treatments during the crop rotation period of 2013?2015
项目 Item | 分项 Subitem | CK | DSR | SC |
---|---|---|---|---|
农资投入 Agricultural material inputs | 氮肥 N fertilizer/(kg∙hm-2) | 274.2 | 274.2 | 274.2 |
磷肥 P fertilizer/(kg∙hm-2) | 207 | 207 | 207 | |
钾肥 K fertilizer/(kg∙hm-2) | 90 | 90 | 90 | |
大豆种子 Soybean seed/(kg∙hm-2) | 75 | 75 | 75 | |
玉米种子 Maize seed/(kg∙hm-2) | 45 | 45 | 45 | |
除草剂 Herbicide/(L∙hm-2) | 3.6 | 3.6 | 3.6 | |
杀虫剂 Pesticide/(L∙hm-2) | 4.5 | 4.5 | 4.5 | |
柴油消耗 Diesel consumption/ (L∙hm-2) | 秸秆移出 Straw removal | 18.0 | — | — |
灭茬 Stubble cleaning | 27.0 | 27.0 | — | |
旋地 Rotary tillage | 54.0 | — | — | |
翻地 Plough tillage | — | 29.3 | — | |
粑地 Harrowing | — | 27.0 | — | |
起垄 Ridging | 22.5 | 22.5 | — | |
轧地 Rolling | 18.0 | 18.0 | 18.0 | |
施肥 Fertilization | 18.0 | 18.0 | 18.0 | |
播种 Seeding | 18.0 | 18.0 | 27.0 | |
喷农药 Spraying pesticide | 36.0 | 36.0 | 36.0 | |
收获 Harvest | 31.5 | 31.5 | 31.5 | |
粉碎 Straw chopping | — | 67.5 | 67.5 |
图4 2013—2015年不同处理农作物产量变化 同一年份数据的不同字母表示处理间差异显著(P<0.05)。下同
Figure 4 Crop yield changes under different treatments during 2013?2015 Different values in same year are significantly different among the treatments (P<0.05). The same below
[1] |
GAN Y T, LIANG C, CHAI Q, et al., 2014. Improving farming practices reduces the carbon footprint of spring wheat production[J]. Nature Communications, DOI: 10.1038/ncomms6012.
DOI |
[2] |
GARCIA R, BAGGS E M, 2007. N2O emission from soil following combined application of fertiliser-N and ground weed residues[J]. Plant and Soil, 299(1-2): 263-274.
DOI URL |
[3] | IPCC, 2021. AR6 Climate Change 2021: The Physical Science Basis. https://www.ipcc.ch/report/ar6/wg1/#FullReport . |
[4] | IPCC, 2013. Climate Change 2013:The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. |
[5] |
LI H, DAI M W, DAI S L, et al., 2018. Current status and environment impact of direct straw return in China's cropland- A review[J]. Ecotoxicology and Environmental Safety, 159: 293-300.
DOI URL |
[6] |
LENKA N K, LAL R, 2013. Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system[J]. Soil and Tillage Research, 126: 78-89.
DOI URL |
[7] |
LIU C Y, WANG K, MENG S X, et al., 2011. Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat-maize rotation field in northern China[J]. Agriculture, Ecosystems and Environment, 140(1): 226-233.
DOI URL |
[8] |
MA J, MA E, XU H, et al., 2009. Wheat straw management affects CH4 and N2O emissions form rice fields[J]. Soil Biology and Biochemistry, 41(5): 1022-1028.
DOI URL |
[9] | PETERS G P, 2010. Carbon footprint and embodied carbon at multiple scales[J]. Current Opinion in Environmental Sustainability, 38(9): 4856-4859. |
[10] |
SUN B F, ZHAO H, LÜ Y Z, et al., 2016. The effects of nitrogen fertilizer application on methane and nitrous oxide emission/uptake in Chinese croplands[J]. Journal of Integrative Agriculture, 15(2): 440-450.
DOI URL |
[11] |
SUN H Y, SHAO L W, LIU X W, et al., 2012. Determination of water consumption and the water-saving potential of three mulching methods in a jujube orchard[J]. European Journal of Agronomy, 43: 87-95.
DOI URL |
[12] |
WALLING E, VANEECKHAUTE C, 2020. Greenhouse gas emissions from inorganic and organic fertilizer production and use: A review of emission factors and their variability[J]. Journal of Environmental Management, DOI: 10.1016/j.jenvman.2020.111211.
DOI |
[13] |
WEST T O, MARLAND G, 2002. Net carbon flux from agricultural ecosystems: Methodology for full carbon cycle analyses[J]. Environmental Pollution, 116(3): 439-444.
DOI URL |
[14] | 成功, 张阿凤, 王旭东, 等, 2016. 运用“碳足迹”的方法评估小麦秸秆及其生物质炭添加对农田生态系统净碳汇的影响[J]. 农业环境科学学报, 35(3): 604-612. |
CHENG G, ZHANG A F, WANG X D, et al., 2016. Assessment of wheat straw and its biochar effects on carbon sink in agricultural ecosystems using “carbon footprint” method[J]. Journal of Agro-Environment Science, 35(3): 604-612. | |
[15] | 杜杰, 王林林, 谢军红, 等, 2020. 基于Meta分析的耕作措施对黄土高原地区小麦和玉米碳足迹影响研究[J]. 云南农业大学学报(自然科学), 35(5): 906-918. |
DU J, WANG L L, XIE J H, et al., 2020. Effect of tillage practices on the carbon footprint of wheat and maize in the loess plateau of China: A meta analysis[J]. Journal of Yunnan Agricultural University (Natural Science), 35(5): 906-918. | |
[16] | 段华平, 张悦, 赵建波, 等, 2011. 中国农田生态系统的碳足迹分析[J]. 水土保持学报, 25(5): 203-208. |
DUAN H P, ZHANG Y, ZHAO J B, et al., 2011. Carbon footprint analysis of farmland ecosystem in China[J]. Journal of Soil and Water Conservation, 25(5): 203-208. | |
[17] | 段智源, 李玉娥, 万运帆, 等, 2014. 不同氮肥处理春玉米温室气体的排放[J]. 农业工程学报, 30(24): 216-224. |
DUAN Z Y, LI Y E, WAN Y F, et al., 2014. Emission of greenhouse gases for spring maize on different fertilizer treatments[J]. Transactions of the Chinese Society of Agricultural Engineering, 30(24): 216-224. | |
[18] | 高洪军, 张卫建, 彭畅, 等, 2017. 长期施肥下黑土玉米田土壤温室气体的排放特征[J]. 农业资源与环境学报, 34(5): 422-430. |
GAO H J, ZHANG W J, PENG C, et al., 2017. Emission characteristics of greenhouse gas from maize field of black soil region under long-term fertilization[J]. Journal of Agricultural Resources and Environment, 34(5): 422-430. | |
[19] | 郝小雨, 周宝库, 马星竹, 等, 2015. 氮肥管理措施对黑土玉米田温室气体排放的影响[J]. 中国环境科学, 35(11): 3227-3238. |
HAO X Y, ZHOU B K, MA X Z, et al., 2015. Effects of nitrogen fertilizer management on greenhouse gas emissions from maize field in black soil[J]. China Environmental Science, 35(11): 3227-3238. | |
[20] | 李春喜, 骆婷婷, 闫广轩, 等, 2020. 河南省不同生态区小麦-玉米两熟制农田碳足迹分析[J]. 生态环境学报, 29(5): 918-925. |
LI C X, LUO T T, YAN G X, et al., 2020. Carbon footprint analysis of wheat-maize double cropping system in different ecological regions of Henan province[J]. Ecology and Environmental Sciences, 29(5): 918-925. | |
[21] | 李平, 郎漫, 李淼, 等, 2018. 不同施肥处理对东北黑土温室气体排放的短期影响[J]. 环境科学, 39(5): 2360-2367. |
LI P, LANG M, LI M, et al., 2018. Short-term effects of different fertilization treatments on greenhouse gas emissions from northeast black soil[J]. Environmental Science, 39(5): 2360-2367. | |
[22] | 李萍, 郝兴宇, 宗毓铮, 等, 2017. 不同耕作措施对雨养冬小麦碳足迹的影响[J]. 中国生态农业学报, 25(6): 839-847. |
LI P, HAO X Y, ZONG Y Z, et al., 2017. Effect of tillage practice on carbon footprint of rainfed winter wheat[J]. Chinese Journal of Eco-Agriculture, 25(6): 839-847. | |
[23] | 刘海涛, 林超文, 朱波, 等, 2016. 耕作和覆盖方式对紫色土坡耕地N2O排放的影响[J]. 西南农业学报, 29(7): 1579-1583. |
LIU H T, LIN C W, ZHU B, et al., 2016. Effects of different cultivation and mulching methods on nitrous oxide emission in slope purple soil[J]. Southwest China Journal of Agricultural Sciences, 29(7): 1579-1583. | |
[24] | 刘全全, 王俊, 付鑫, 等, 2016. 不同覆盖措施对黄土高原旱作农田N2O通量的影响[J]. 干旱地区农业研究, 34(3): 115-122, 178. |
LIU Q Q, WANG J, FU X, et al., 2016. Effects of different mulching m easures on soil N2O flux in rainfed winter wheat fields in the Loess Plateau of China[J]. Agricultural Research in the Arid Areas, 34(3): 115-122, 178. | |
[25] | 吕艳杰, 于海燕, 姚凡云, 等, 2016. 秸秆还田与施氮对黑土区春玉米田产量、温室气体排放及土壤酶活性的影响[J]. 中国生态农业学报, 24(11): 1456-1463. |
LYU Y J, YU H Y, YAO F Y, et al., 2016. Effects of soil straw return and nitrogen on spring maize yield, greenhouse gas emission and soil enzyme activity in black soils[J]. Chinese Journal of Eco-Agriculture, 24(11): 1456-1463. | |
[26] | 米国华, 伍大利, 陈延玲, 等, 2018. 东北玉米化肥减施增效技术途径探讨[J]. 中国农业科学, 51(14): 2758-2770. |
MI G H, WU D L, CHEN Y L, et al., 2018. The ways to reduce chemical fertilizer input and increase fertilizer use efficiency in maize in northeast China[J]. Scientia Agricultura Sinica, 51(14): 2758-2770. | |
[27] | 裴淑玮, 张圆圆, 刘俊锋, 等, 2012. 施肥及秸秆还田处理下玉米季温室气体的排放[J]. 环境化学, 31(4): 407-414. |
PEI S W, ZHANG Y Y, LIU J F, et al., 2012. Greenhouse gas emission under the treatments of fertilization and wheat straw returning during the maize growing seasons[J]. Environmental Chemistry, 31(4): 407-414. | |
[28] | 宋利娜, 张玉铭, 胡春胜, 等, 2013. 华北平原高产农区冬小麦农田土壤温室气体排放及其综合温室效应[J]. 中国生态农业学报, 21(3): 297-307. |
SONG L N, ZHANG Y M, HU C S, et al., 2013. Comprehensive analysis of emissions and global warming effects of greenhouse gases in winter-wheat fields in the high-yield agro-region of North China Plain[J]. Chinese Journal of Eco-Agriculture, 21(3): 297-307. | |
[29] | 唐占明, 刘杏认, 张晴雯, 等, 2021. 对比研究生物炭和秸秆对麦玉轮作系统N2O排放的影响[J]. 环境科学, 42(3): 1569-1580. |
TANG Z M, LIU X R, ZHANG Q W, et al., 2021. Effects of biochar and straw on soil N2O emission from a wheat maize rotation system[J]. Environmental Science, 42(3): 1569-1580. | |
[30] | 王晓军, 高洪生, 李伟群, 等, 2017. 保护性耕作对土壤物理性状及有机碳储量的影响[J]. 黑龙江农业科学 (12): 36-40. |
WANG X J, GAO H S, LI W Q, et al., 2017. Effects of conservation tillage on soil physical features and organic carbon storage[J]. Heilongjiang Agricultural Sciences (12): 36-40. | |
[31] | 王钰乔, 濮超, 赵鑫, 等, 2018. 中国小麦、玉米碳足迹历史动态及未来趋势[J]. 资源科学, 40(9): 1800-1811. |
WANG Y Q, PU C, ZHAO X, et al., 2018. Historical dynamics and future trends of carbon footprint of wheat and maize in China[J]. Resources Science, 40(9): 1800-1811. | |
[32] | 伍芬琳, 李琳, 张海林, 等, 2007. 保护性耕作对农田生态系统净碳释放量的影响[J]. 生态学杂志, 26(12): 2035-2039. |
WU F L, LI L, ZHANG H L, et al., 2007. Effects of conservation tillage on net carbon flux from farmland ecosystems[J]. Chinese Journal of Ecology, 26(12): 2035-2039. | |
[33] | 闫翠萍, 张玉铭, 胡春胜, 等, 2016. 不同耕作措施下小麦-玉米轮作农田温室气体交换及其综合增温潜势[J]. 中国生态农业学报, 24(6): 704-715. |
YAN C P, ZHANG Y M, HU C S, et al., 2016. Greenhouse gas exchange and comprehensive global warming potential under different wheat-maize rotation patterns[J]. Chinese Journal of Eco-Agriculture, 24(6): 704-715. | |
[34] | 殷文, 赵财, 于爱忠, 等, 2015. 秸秆还田后少耕对小麦/玉米间作系统中种间竞争和互补的影响[J]. 作物学报, 41(4): 633-641. |
YIN W, ZHAO C, YU A Z, et al., 2015. Effect of straw returning and reduced tillage on interspecific competition and complementation in wheat/maize intercropping system[J]. Acta Agronomica Sinica, 41(4): 633-641.
DOI URL |
|
[35] | 张冉, 赵鑫, 濮超, 等, 2015. 中国农田秸秆还田土壤N2O排放及其影响因素的Meta分析[J]. 农业工程学报, 31(22): 1-6. |
ZHANG R, ZHAO X, PU C, et al., 2015. Meta-analysis on effects of residue retention on soil N2O emissions and influence factors in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 31(22): 1-6. | |
[36] | 张鑫, 李著园, 孟凡乔, 等, 2020. 桓台县冬小麦和夏玉米秸秆长期还田的生态效益分析[J]. 生态学报, 40(12): 4157-4168. |
ZHANG X, LI J Y, MENG F Q, et al., 2020. Ecological impacts of winter wheat and summer maize straw incorporation in Huantai County, Shandong Province[J]. Acta Ecologica Sinica, 40(12): 4157-4168. | |
[37] | 朱晓晴, 安晶, 马玲, 等, 2020. 秸秆还田深度对土壤温室气体排放及玉米产量的影响[J]. 中国农业科学, 53(5): 977-989. |
ZHU X Q, AN J, MA L, et al., 2020. Effects of different straw returning depths on soil greenhouse gas emission and maize yield[J]. Scientia Agricultura Sinica, 53(5): 977-989. |
[1] | 张露, 何雨霏, 陈坦, 杨婷, 张冰, 金军. 2011—2020年汾渭平原农田生态系统碳足迹的时空格局演变[J]. 生态环境学报, 2023, 32(6): 1149-1162. |
[2] | 徐敏, 许超, 余光辉, 尹力初, 张泉, 朱捍华, 朱奇宏, 张杨珠, 黄道友. 地下水位和长期秸秆还田对土壤镉有效性及稻米镉含量的影响[J]. 生态环境学报, 2023, 32(1): 150-157. |
[3] | 姜超强, 李晨, 朱启法, 徐海清, 刘炎红, 沈嘉, 阎轶峰, 余飞, 祖朝龙. 皖南不同种植模式碳汇效应及经济效益评价[J]. 生态环境学报, 2022, 31(7): 1285-1292. |
[4] | 相恒星, 张健, 王宗明, 毛德华. 松嫩平原生态系统服务供需研究[J]. 生态环境学报, 2021, 30(8): 1769-1776. |
[5] | 邹晨怡, 丁洪, 王亚萨, 张玉树, 余居华, 郑祥洲. 秸秆对尿素氮在土壤中转化的影响[J]. 生态环境学报, 2021, 30(6): 1213-1219. |
[6] | 陈思, 王灿, 李想, 李明锐, 湛方栋, 李元, 祖艳群, 何永美. 不同UV-B辐射增幅对稻田土壤酶活性、活性有机碳含量及温室气体排放的影响[J]. 生态环境学报, 2021, 30(6): 1260-1268. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||