生态环境学报 ›› 2022, Vol. 31 ›› Issue (10): 2019-2027.DOI: 10.16258/j.cnki.1674-5906.2022.10.010
陈浩(), 张玉莹, 钟妍, 张世伟, 陈俊伟, 冯加良*(
)
收稿日期:
2020-04-15
出版日期:
2022-10-18
发布日期:
2022-12-09
通讯作者:
*E-mail: fengjialiang@shu.edu.cn作者简介:
陈浩(1994年生),男,硕士研究生,研究方向为气溶胶化学。E-mail: 964099816@qq.com
基金资助:
CHEN Hao(), ZHANG Yuying, ZHONG Yan, ZHANG Shiwei, CHEN Junwei, FENG Jialiang*(
)
Received:
2020-04-15
Online:
2022-10-18
Published:
2022-12-09
摘要:
有机胺是大气细颗粒中一类重要的碱性含氮有机物,可能在大气新粒子生成和二次有机气溶胶形成过程中起着重要作用,但我们对大气细颗粒物中有机胺浓度和组成的了解还很缺乏。为了解上海市亚微米颗粒物(PM1)中有机胺的浓度、组成及潜在来源,在上海大学宝山校区于2017年6月—2018年5月采集了65个PM1样品,采用苯磺酰氯(BSC)衍生化和气相色谱-质谱联用仪(GC-MS)检测方法定量分析了甲胺(MA)、二甲胺(DMA)、乙胺(EA)、二乙胺(DEA)、丙胺(PA)和丁胺(BA)6种低分子脂肪胺的浓度,并通过相关性分析、主成分分析及气团后向轨迹分析探讨了有机胺的潜在来源。结果表明,采样期间上海PM1中6种有机胺总质量浓度为4.60—132.98 ng·m-3,年平均质量浓度为46.49 ng·m-3;甲胺、二甲胺、乙胺和二乙胺是主要的有机胺单体,占6种有机胺总浓度的97%,其中甲胺的年均占比为51.3%。PM1中有机胺总浓度呈现较明显的季节性变化:夏季>秋季>春季≈冬季;MA在有机胺总浓度中的占比夏季最高、冬季最低,而DMA和DEA的相对贡献冬季最高、夏天最低。有机胺总浓度与SO42-浓度之间在不同季节均存在显著正相关关系,而与NO3-之间仅在冬季和夏季显著相关,说明有机胺可能主要与硫酸根结合。有机胺单体之间的相关性分析以及结合主要水溶性组分的主成分分析表明这些有机胺单体可能来自相似的排放源,但不同单体浓度的季节变化不同,说明不同季节有机胺的来源有一定的差别,二次生成及生物质燃烧可能不是上海PM1中有机胺的主要来源。后向轨迹聚类分析显示,有机胺主要受本地排放源的影响,外来传输以及海洋源可能有一定的影响,但不是主要的来源。研究结果能为大气细颗粒物环境影响评价提供重要的基础数据。
中图分类号:
陈浩, 张玉莹, 钟妍, 张世伟, 陈俊伟, 冯加良. 上海市亚微米颗粒物中有机胺的浓度与组成特征[J]. 生态环境学报, 2022, 31(10): 2019-2027.
CHEN Hao, ZHANG Yuying, ZHONG Yan, ZHANG Shiwei, CHEN Junwei, FENG Jialiang. Concentration and Composition of Organic Amines in PM1 in Shanghai[J]. Ecology and Environment, 2022, 31(10): 2019-2027.
季节 Season | 有机胺质量浓度 ∑ρ(amines)/ (ng·m-3) | PM1质量浓度 ρ(PM1)/ (μg·m-3) | 有机胺/PM1 ∑ρ(amines)/ ρ(PM1) |
---|---|---|---|
春季 Spring (n=17) | 40.57±27.55 | 26.07±10.76 | 0.16% |
夏季 Summer (n=18) | 53.81±38.44 | 22.01±9.06 | 0.24% |
秋季 Autumn (n=18) | 45.79±24.07 | 22.19±9.06 | 0.21% |
冬季 Winte r(n=12) | 40.65±22.54 | 44.09±18.40 | 0.09% |
表1 上海市PM1中有机胺质量浓度季节分布
Table 1 Seasonal concentrations of amines in PM1 in Shanghai
季节 Season | 有机胺质量浓度 ∑ρ(amines)/ (ng·m-3) | PM1质量浓度 ρ(PM1)/ (μg·m-3) | 有机胺/PM1 ∑ρ(amines)/ ρ(PM1) |
---|---|---|---|
春季 Spring (n=17) | 40.57±27.55 | 26.07±10.76 | 0.16% |
夏季 Summer (n=18) | 53.81±38.44 | 22.01±9.06 | 0.24% |
秋季 Autumn (n=18) | 45.79±24.07 | 22.19±9.06 | 0.21% |
冬季 Winte r(n=12) | 40.65±22.54 | 44.09±18.40 | 0.09% |
有机胺 ρ(Amine) | 春季 Spring (n=17) | 夏季 Summer (n=18) | 秋季 Autumn (n=18) | 冬季 Winter (n=12) | 全年 Annual (n=65) | 夏季/冬季 Summer/Winter |
---|---|---|---|---|---|---|
甲胺 ρ(MA) | 21.52±16.36 | 31.28±25.03 | 22.65±14.21 | 14.34±6.31 | 22.45±18.54 | 2.2 |
二甲胺 ρ(DMA) | 9.51±7.32 | 7.87±4.81 | 9.98±5.57 | 10.12±3.94 | 9.37±5.74 | 0.8 |
乙胺 ρ(EA) | 2.67±1.90 | 5.26±3.93 | 3.99±2.27 | 3.46±1.84 | 3.85±2.88 | 1.5 |
二乙胺 ρ(DEA) | 5.84±3.18 | 7.71±5.08 | 7.82±3.86 | 6.31±3.25 | 6.92±4.09 | 1.2 |
丙胺 ρ(PA) | 0.15±0.13 | 0.20±0.13 | 0.21±0.09 | 0.22±0.11 | 0.20±0.16 | 0.9 |
丁胺 ρ(BA) | 0.89±0.72 | 1.47±1.08 | 1.13±0.83 | 0.56±0.41 | 1.01±0.89 | 2.6 |
表2 上海市PM1中6种有机胺质量浓度的季节分布
Table 2 Seasonal distributions of six organic amines in PM1 in Shanghai ng·m-3
有机胺 ρ(Amine) | 春季 Spring (n=17) | 夏季 Summer (n=18) | 秋季 Autumn (n=18) | 冬季 Winter (n=12) | 全年 Annual (n=65) | 夏季/冬季 Summer/Winter |
---|---|---|---|---|---|---|
甲胺 ρ(MA) | 21.52±16.36 | 31.28±25.03 | 22.65±14.21 | 14.34±6.31 | 22.45±18.54 | 2.2 |
二甲胺 ρ(DMA) | 9.51±7.32 | 7.87±4.81 | 9.98±5.57 | 10.12±3.94 | 9.37±5.74 | 0.8 |
乙胺 ρ(EA) | 2.67±1.90 | 5.26±3.93 | 3.99±2.27 | 3.46±1.84 | 3.85±2.88 | 1.5 |
二乙胺 ρ(DEA) | 5.84±3.18 | 7.71±5.08 | 7.82±3.86 | 6.31±3.25 | 6.92±4.09 | 1.2 |
丙胺 ρ(PA) | 0.15±0.13 | 0.20±0.13 | 0.21±0.09 | 0.22±0.11 | 0.20±0.16 | 0.9 |
丁胺 ρ(BA) | 0.89±0.72 | 1.47±1.08 | 1.13±0.83 | 0.56±0.41 | 1.01±0.89 | 2.6 |
有机胺 Amine | 甲胺 MA | 二甲胺 DMA | 乙胺 EA | 二乙胺 DEA |
---|---|---|---|---|
甲胺 MA | 1 | |||
二甲胺 DMA | 0.690** | 1 | ||
乙胺 EA | 0.840** | 0.671** | 1 | |
二乙胺 DEA | 0.677** | 0.652** | 0.772** | 1 |
表3 主要有机胺之间的相关性分析
Table 3 Correlations between the major organic amines
有机胺 Amine | 甲胺 MA | 二甲胺 DMA | 乙胺 EA | 二乙胺 DEA |
---|---|---|---|---|
甲胺 MA | 1 | |||
二甲胺 DMA | 0.690** | 1 | ||
乙胺 EA | 0.840** | 0.671** | 1 | |
二乙胺 DEA | 0.677** | 0.652** | 0.772** | 1 |
采样地点 Sampling site | 日期 Date | 颗粒物 粒径 Particle size | 有机胺质量浓度 ρ(Amine)/(ng·m-3) | 分析方法Analysis method | 参考文献 Reference | |||||
---|---|---|---|---|---|---|---|---|---|---|
甲胺MA | 二甲胺 DMA | 乙胺 EA | 二乙胺 DEA | 丙胺 PA | 丁胺BA | |||||
上海 Shanghai | Jun, 2017-May, 2018 | PM1 | 22.45 | 9.37 | 3.85 | 6.92 | 0.20 | 1.55 | GC-MS | This study |
上海 Shanghai | Jul, 2013-Aug, 2013 | PM1 | 7.7 | 13.4 | 9.7 | — | — | — | IC | 2016 |
上海 Shanghai | Jul, 2013-Aug, 2013 | PM2.5 | 3.89 | — | 0.26 | — | 0.11 | 0.39 | HPLC | 2016 |
广州 Guangzhou | Sep, 2014-Oct, 2014 | PM3 | 50.4 | 17.7 | 3.95 | 4.78 | 0.59 | 3.04 | GC-MS | 2017b |
广州 Guangzhou | Oct, 2016-Nov, 2017 | PM2.5 | 56.1 | 45.5 | — | 9.17 | — | — | GC-MS | 2018 |
南京 Nanjing | Nov, 2017-Dec, 2018 | PM2.5 | 13.1 | 20.2 | 6.3 | — | — | — | IC | 2020 |
扬州 Yangzhou | Nov, 2015-Apr, 2016 | PM2.5 | 5.7 | 7.9 | 20.3 | — | — | — | HPLC | 2017 |
扬州 Yangzhou | Apr, 2016-Nov, 2016 | PM2.5 | 1.42 | 3.62 | 12.6 | — | — | — | HPLC | 2020 |
北京 Beijing | Jan, 2013-Feb, 2013 | PM2.5 | 31.0 | 4.3 | 14.8 | 2.1 | — | — | HPLC | 2016 |
西安 Xi’an | Jan, 2013-Feb, 2013 | PM2.5 | 24.7 | 3.8 | 12.6 | 2.0 | — | — | HPLC | 2016 |
厦门 Xiamen | Jan, 2013-Feb, 2013 | PM2.5 | 10.2 | 1.7 | 15.3 | 0.9 | — | — | HPLC | 2016 |
中国香港 Hong Kong, China | Jan, 2013-Feb, 2013 | PM2.5 | 12.1 | 1.5 | 4.5 | 0.9 | — | — | HPLC | 2016 |
黄海和渤海 The Yellow Sea and Bohai Sea of China | May, 2012 | PM1.1 | — | 121.7 | — | — | — | — | IC | 2015 |
中国东海 The East Sea of China | Aug, 2015 | PM10 | — | 41.9 | — | — | — | — | IC | 2016 |
土耳其 Turkey | Oct, 2006-Apr, 2007 | PM2.5 | 3.42 | 3.73 | 3.28 | 3.46 | 4.32 | 5.45 | HPLC | 2008 |
韩国 Korea | Mar, 2001-Apr, 2001 | 13.5 | — | 3.1 | — | — | — | HPLC | 2004 | |
美国 USA | Jul, 2005-Aug, 2005 | PM2.5 | — | 31.0 | — | — | — | — | IC | 2007 |
美国 USA | Jul, 2012-Jul, 2013 | PM1 | — | 14.5 | — | — | — | — | IC | 2015 |
表4 不同地区大气颗粒物中有机胺浓度、组成的比较
Table 4 Comparison of the concentrations and compositions of the airborne amines in different places
采样地点 Sampling site | 日期 Date | 颗粒物 粒径 Particle size | 有机胺质量浓度 ρ(Amine)/(ng·m-3) | 分析方法Analysis method | 参考文献 Reference | |||||
---|---|---|---|---|---|---|---|---|---|---|
甲胺MA | 二甲胺 DMA | 乙胺 EA | 二乙胺 DEA | 丙胺 PA | 丁胺BA | |||||
上海 Shanghai | Jun, 2017-May, 2018 | PM1 | 22.45 | 9.37 | 3.85 | 6.92 | 0.20 | 1.55 | GC-MS | This study |
上海 Shanghai | Jul, 2013-Aug, 2013 | PM1 | 7.7 | 13.4 | 9.7 | — | — | — | IC | 2016 |
上海 Shanghai | Jul, 2013-Aug, 2013 | PM2.5 | 3.89 | — | 0.26 | — | 0.11 | 0.39 | HPLC | 2016 |
广州 Guangzhou | Sep, 2014-Oct, 2014 | PM3 | 50.4 | 17.7 | 3.95 | 4.78 | 0.59 | 3.04 | GC-MS | 2017b |
广州 Guangzhou | Oct, 2016-Nov, 2017 | PM2.5 | 56.1 | 45.5 | — | 9.17 | — | — | GC-MS | 2018 |
南京 Nanjing | Nov, 2017-Dec, 2018 | PM2.5 | 13.1 | 20.2 | 6.3 | — | — | — | IC | 2020 |
扬州 Yangzhou | Nov, 2015-Apr, 2016 | PM2.5 | 5.7 | 7.9 | 20.3 | — | — | — | HPLC | 2017 |
扬州 Yangzhou | Apr, 2016-Nov, 2016 | PM2.5 | 1.42 | 3.62 | 12.6 | — | — | — | HPLC | 2020 |
北京 Beijing | Jan, 2013-Feb, 2013 | PM2.5 | 31.0 | 4.3 | 14.8 | 2.1 | — | — | HPLC | 2016 |
西安 Xi’an | Jan, 2013-Feb, 2013 | PM2.5 | 24.7 | 3.8 | 12.6 | 2.0 | — | — | HPLC | 2016 |
厦门 Xiamen | Jan, 2013-Feb, 2013 | PM2.5 | 10.2 | 1.7 | 15.3 | 0.9 | — | — | HPLC | 2016 |
中国香港 Hong Kong, China | Jan, 2013-Feb, 2013 | PM2.5 | 12.1 | 1.5 | 4.5 | 0.9 | — | — | HPLC | 2016 |
黄海和渤海 The Yellow Sea and Bohai Sea of China | May, 2012 | PM1.1 | — | 121.7 | — | — | — | — | IC | 2015 |
中国东海 The East Sea of China | Aug, 2015 | PM10 | — | 41.9 | — | — | — | — | IC | 2016 |
土耳其 Turkey | Oct, 2006-Apr, 2007 | PM2.5 | 3.42 | 3.73 | 3.28 | 3.46 | 4.32 | 5.45 | HPLC | 2008 |
韩国 Korea | Mar, 2001-Apr, 2001 | 13.5 | — | 3.1 | — | — | — | HPLC | 2004 | |
美国 USA | Jul, 2005-Aug, 2005 | PM2.5 | — | 31.0 | — | — | — | — | IC | 2007 |
美国 USA | Jul, 2012-Jul, 2013 | PM1 | — | 14.5 | — | — | — | — | IC | 2015 |
有机胺 Amine | 季节 Season | 硝酸根质量浓度c(NO3-) | 硫酸根质量浓度 c(SO42-) |
---|---|---|---|
总有机胺 ∑c(Amine) | 春季 Spring(n=17) | 0.269 | 0.586* |
夏季 Summer(n=18) | 0.510* | 0.547* | |
秋季 Autumn(n=18) | 0.213 | 0.521* | |
冬季 Winter(n=12) | 0.770** | 0.890** |
表5 不同季节有机胺与NO3-、SO42-浓度之间的相关性
Table 5 Seasonal correlation between ∑amine and NO3-, SO42-
有机胺 Amine | 季节 Season | 硝酸根质量浓度c(NO3-) | 硫酸根质量浓度 c(SO42-) |
---|---|---|---|
总有机胺 ∑c(Amine) | 春季 Spring(n=17) | 0.269 | 0.586* |
夏季 Summer(n=18) | 0.510* | 0.547* | |
秋季 Autumn(n=18) | 0.213 | 0.521* | |
冬季 Winter(n=12) | 0.770** | 0.890** |
组分 Components | 因子1 Factor 1 | 因子2 Factor 2 | 因子3 Factor 3 | 因子4 Factor 4 |
---|---|---|---|---|
水溶性有机氮 WSON | 0.614 | 0.315 | -0.134 | 0.249 |
甲胺 MA | 0.008 | 0.943 | -0.049 | 0.065 |
二甲胺 DMA | 0.451 | 0.732 | 0.092 | -0.238 |
乙胺 EA | 0.101 | 0.922 | 0.089 | 0.026 |
二乙胺DEA | 0.252 | 0.806 | 0.073 | 0.059 |
氯离子 Cl- | 0.657 | -0.157 | 0.533 | 0.005 |
硝酸根离子 NO3- | 0.851 | 0.051 | 0.370 | -0.139 |
硫酸根离子 SO42- | 0.663 | 0.423 | 0.071 | 0.307 |
钠离子 Na+ | 0.038 | 0.000 | 0.127 | 0.945 |
铵根离子 NH4+ | 0.894 | 0.264 | 0.168 | -0.099 |
钾离子 K+ | 0.752 | 0.148 | 0.390 | 0.063 |
钙离子 Ca2+ | 0.267 | -0.102 | 0.864 | 0.025 |
镁离子 Mg2+ | 0.005 | -0.043 | 0.800 | 0.015 |
方差百分比% of variance | 25% | 23% | 22% | 8% |
表6 上海大气PM1中主要组分与有机胺的主成分分析结果
Table 6 Factor loading matrix for main components and amines in PM1 in Shanghai
组分 Components | 因子1 Factor 1 | 因子2 Factor 2 | 因子3 Factor 3 | 因子4 Factor 4 |
---|---|---|---|---|
水溶性有机氮 WSON | 0.614 | 0.315 | -0.134 | 0.249 |
甲胺 MA | 0.008 | 0.943 | -0.049 | 0.065 |
二甲胺 DMA | 0.451 | 0.732 | 0.092 | -0.238 |
乙胺 EA | 0.101 | 0.922 | 0.089 | 0.026 |
二乙胺DEA | 0.252 | 0.806 | 0.073 | 0.059 |
氯离子 Cl- | 0.657 | -0.157 | 0.533 | 0.005 |
硝酸根离子 NO3- | 0.851 | 0.051 | 0.370 | -0.139 |
硫酸根离子 SO42- | 0.663 | 0.423 | 0.071 | 0.307 |
钠离子 Na+ | 0.038 | 0.000 | 0.127 | 0.945 |
铵根离子 NH4+ | 0.894 | 0.264 | 0.168 | -0.099 |
钾离子 K+ | 0.752 | 0.148 | 0.390 | 0.063 |
钙离子 Ca2+ | 0.267 | -0.102 | 0.864 | 0.025 |
镁离子 Mg2+ | 0.005 | -0.043 | 0.800 | 0.015 |
方差百分比% of variance | 25% | 23% | 22% | 8% |
[1] |
AIKEN A C, DECARLO P F, KROLL J H, et al., 2008. O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry[J]. Environmental Science & Technology, 42(12): 4478-4485.
DOI URL |
[2] |
AKYUZ M, 2008. Simultaneous determination of aliphatic and aromatic amines in ambient air and airborne particulate matters by gas chromatography-mass spectrometry[J]. Atmospheric Environment, 42(16): 3809-3819.
DOI URL |
[3] |
BARBARO E, ZANGRANDO R, MORET I, et al., 2011. Free amino acids in atmospheric particulate matter of Venice, Italy[J]. Atmospheric Environment, 45(28): 5050-5057.
DOI URL |
[4] |
CALDERON S M, POOR N D, CAMPBELL S W, 2007. Estimation of the particle and gas scavenging contributions to wet deposition of organic nitrogen[J]. Atmospheric Environment, 41(20): 4281-4290.
DOI URL |
[5] | CHAN L P, CHAN C K, 2012. Displacement of ammonium from aerosol particles by uptake of triethylamine[J]. Abstracts of Papers of the American Chemical Society, 46(2): 236-247. |
[6] |
CHAN L P, CHAN C K, 2013. Role of the aerosol phase state in ammonia/amines exchange reactions[J]. Environmental Science & Technology, 47(11): 5755-5762.
DOI URL |
[7] |
CHEN H H, EZELL M J, ARQUERO K D, et al., 2015. New particle formation and growth from methanesulfonic acid, trimethylamine and water[J]. Physical Chemistry Chemical Physics, 17(20): 13699-13709.
DOI PMID |
[8] |
CHEN H H, VARNER M E, GERBER R B, et al., 2016. Reactions of methanesulfonic acid with amines and ammonia as a source of new particles in air[J]. Journal of Physical Chemistry B, 120(8): 1526-1536.
DOI URL |
[9] |
CHENG G H, HU Y Y, SUN M Y, et al., 2020. Characteristics and potential source areas of aliphatic amines in PM2.5 in Yangzhou, China[J]. Atmospheric Pollution Research, 11(2): 296-302.
DOI URL |
[10] |
DAY D A, LIU S, RUSSELL L M, et al., 2010. Organonitrate group concentrations in submicron particles with high nitrate and organic fractions in coastal southern California[J]. Atmospheric Environment, 44(16): 1970-1979.
DOI URL |
[11] |
FENG J L, LI M, ZHANG P, et al., 2013. Investigation of the sources and seasonal variations of secondary organic aerosols in PM2.5 in Shanghai with organic tracers[J]. Atmospheric Environment, 79: 614-622.
DOI URL |
[12] |
GE X L, WEXLER A S, CLEGG S L, 2011a. Atmospheric amines-Part I. A review[J]. Atmospheric Environment, 45(3): 524-546.
DOI URL |
[13] |
GE X L, WEXLER A S, CLEGG S L, 2011b. Atmospheric amines-Part II. Thermodynamic properties and gas/particle partitioning[J]. Atmospheric Environment, 45(3): 561-577.
DOI URL |
[14] |
GREIM H, BURY D, KLIMISCH H J, et al., 1998. Toxicity of aliphatic amines: Structure-activity relationship[J]. Chemosphere, 36(2): 271-295.
PMID |
[15] |
HO K F, HO S S H, HUANG R J, et al., 2015. Characteristics of water-soluble organic nitrogen in fine particulate matter in the continental area of China[J]. Atmospheric Environment, 106: 252-261.
DOI URL |
[16] |
HO K F, HO S S H, HUANG R J, et al., 2016. Chemical composition and bioreactivity of PM2.5 during 2013 haze events in China[J]. Atmospheric Environment, 126: 162-170.
DOI URL |
[17] |
HU Q J, YU P R, ZHU Y J, et al., 2015. Concentration, size distribution, and formation of trimethylaminium and dimethylaminium ions in atmospheric particles over marginal seas of China[J]. Journal of the Atmospheric Sciences, 72(9): 3487-3498.
DOI URL |
[18] | HUANG X F, DENG C R, ZHUANG G S, et al., 2016. Quantitative analysis of aliphatic amines in urban aerosols based on online derivatization and high performance liquid chromatography[J]. Environmental Science-Processes & Impacts, 18(7): 796-801. |
[19] |
LEE D, WEXLER A S, 2013. Atmospheric amines-Part III: Photochemistry and toxicity[J]. Atmospheric Environment, 71: 95-103.
DOI URL |
[20] |
LIU F X, BI X H, REN Z F, et al., 2017a. Determination of amines associated with particles by gas chromatography-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 45(4): 477-482.
DOI URL |
[21] |
LIU F X, BI X H, ZHANG G H, et al., 2017b. Concentration, size distribution and dry deposition of amines in atmospheric particles of urban Guangzhou, China[J]. Atmospheric Environment, 171: 279-288.
DOI URL |
[22] |
LIU F X, BI X H, ZHANG G H, et al., 2018. Gas-to-particle partitioning of atmospheric amines observed at a mountain site in southern China[J]. Atmospheric Environment, 195: 1-11.
DOI URL |
[23] | MADER B T, YU J Z, XU J H, et al., 2004. Molecular composition of the water-soluble fraction of atmospheric carbonaceous aerosols collected during ACE-Asia[J]. Journal of Geophysical Research Atmospheres, 109(D6): 6206. |
[24] |
MANDALAKIS M, APOSTOLAKI M, TZIARAS T, et al., 2011. Free and combined amino acids in marine background atmospheric aerosols over the Eastern Mediterranean[J]. Atmospheric Environment, 45(4): 1003-1009.
DOI URL |
[25] | MAZZARELLA G, LUCARIELLO A, BIANCO A, et al., 2014. Exposure to submicron particles PM1.0 from diesel exhaust and pollen allergens of human lung epithelial cells Induces morphological changes of mitochondria tonifilaments and rough endoplasmic reticulum[J]. In Vivo: International Journal of In Vivo Research, 28(4): 557-561. |
[26] | MURPHY S M, SOROOSHIAN A, KROLL J H, et al., 2007. Secondary aerosol formation from atmospheric reactions of aliphatic amines[J]. Atmospheric Chemistry and Physics, 7(9): 2313-2337. |
[27] |
QIU C, WANG L, LAL V, et al., 2011. Heterogeneous reactions of alkylamines with ammonium sulfate and ammonium bisulfate[J]. Environmental Science & Technology, 45(11): 4748-4755.
DOI URL |
[28] |
SCHADE G W, CRUTZEN P J, 1995. Emission of aliphatic amines from animal husbandry and their reactions: Potential source of N2O and HCN[J]. Journal of Atmospheric Chemistry, 22(3): 319-346.
DOI URL |
[29] |
SHEN W C, REN L L, ZHAO Y, et al., 2017. C1-C2alkyl aminiums in urban aerosols: Insights from ambient and fuel combustion emission measurements in the Yangtze River Delta region of China[J]. Environmental Pollution, 230: 12-21.
DOI URL |
[30] |
TANG X C, PRICE D, PRASKE E, et al., 2013. NO3- radical, OH radical and O3-initiated secondary aerosol formation from aliphatic amines[J]. Atmospheric Environment, 72: 105-112.
DOI URL |
[31] |
TAO Y, YE X N, JIANG S Q, et al., 2016. Effects of amines on particle growth observed in new particle formation events[J]. Journal of Geophysical Research Atmospheres, 121(1): 324-335.
DOI URL |
[32] |
VAN PINXTEREN M, FOMBA K W, VAN PINXTEREN D, et al., 2019. Aliphatic amines at the Cape Verde Atmospheric Observatory: Abundance, origins and sea-air fluxes[J]. Atmospheric Environment, 203: 183-195.
DOI URL |
[33] | VANDENBOER T C, PETROFF A, MARKOVIC M Z, et al., 2011. Size distribution of alkyl amines in continental particulate matter and their online detection in the gas and particle phase[J]. Atmospheric Chemistry & Physics, 11(9): 4319-4332. |
[34] |
WANG L, KHALIZOV A F, ZHENG J, et al., 2010. Atmospheric nanoparticles formed from heterogeneous reactions of organics[J]. Nature Geoscience, 3(4): 238-242.
DOI URL |
[35] | XING L, FU T M, CAO J J, et al., 2013. Seasonal and spatial variability of the OM/OC mass ratios and high regional correlation between oxalic acid and zinc in Chinese urban organic aerosols[J]. Atmospheric Chemistry and Physics, 13(8): 4307-4318. |
[36] |
YAO L, GARMASH O, BIANCHI F, et al., 2018. Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity[J]. Science, 361(6399): 278-281.
DOI PMID |
[37] |
YOUN J S, CROSBIE E, MAUDLIN L C, et al., 2015. Dimethylamine as a major alkyl amine species in particles and cloud water: Observations in semi-arid and coastal regions[J]. Atmospheric Environment, 122: 250-258.
PMID |
[38] |
YU P R, HU Q J, LI K, et al., 2016. Characteristics of dimethylaminium and trimethylaminium in atmospheric particles ranging from supermicron to nanometer sizes over eutrophic marginal seas of China and oligotrophic open oceans[J]. Science of the Total Environment, 572: 813-824.
DOI URL |
[39] |
ZHANG H F, REN S Y, YU J W, et al., 2012. Occurrence of selected aliphatic amines in source water of major cities in China[J]. Journal of Environmental Sciences-China, 24(11): 1885-1890.
PMID |
[40] | 李栩婕, 施晓雯, 马嫣, 等, 2020. 南京北郊四季PM2.5中有机胺的污染特征及来源解析[J]. 环境科学: 41(2): 537-553. |
LI X J, SHI X W, MA Y, et al., 2020. Characterization, seasonal variation, and source apportionments of particulate amines (PM2.5) in northern suburb of Nanjing[J]. Environmental Science, 41(2): 537-553. | |
[41] | 徐玢花, 杜艳, 胡俊超, 等, 2016. 上海PM2.5中水溶性有机氮的污染特征[J]. 地球化学, 42(2): 190-198. |
XU B H, DU Y, HU J C, et al., 2016. Characteristics of water-soluble organic nitrogen in PM2.5 in Shanghai[J]. Geochimica, 42(2): 190-198. | |
[42] | 王杨君, 董亚萍, 冯加良, 等, 2010. 上海市PM2.5中含碳物质的特征和影响因素分析[J]. 环境科学, 31(8): 1755-1761. |
WANG Y J, DONG Y P, FENG J L, et al., 2010. Characteristics and influencing factors of carbonaceous aerosols in PM2.5 in Shanghai, China[J]. Environmental Science, 31(8): 1755-1761. | |
[43] | 张攀, 仲勉, 管晶晶, 等, 2013. 应用溶蚀器/后置膜系统分析上海大气PM2.5中水溶性离子的组成及采样误差[J]. 地球化学, 42(3): 197-204. |
ZHANG P, ZHONG M, GUAN J J, et al., 2013. Concentrations and sampling artifacts of water-soluble ions in PM2.5 in Shanghai sampled using denuder/backup-filter system[J]. Geochimica, 42(3): 197-204. | |
[44] | 张胜华, 黄伊宁, 毛文文, 等, 2019. 上海大气颗粒物中无机离子的粒径分布及其季节变化[J]. 环境科学学报, 39(1): 72-79. |
ZHANG S H, HUANG Y N, MAO W W, et al., 2019. Seasonal variations of the size distributions of inorganic ions in the atmospheric particles in Shanghai[J]. Acta Scientiae Circumstantiae, 39(1): 72-79. |
[1] | 王敬, 孟珂, 陈璇, 章家恩, 向慧敏, 钟嘉文, 石兆基. 酸雨对生菜和上海青的产量、品质及生理特性的影响[J]. 生态环境学报, 2023, 32(6): 1098-1107. |
[2] | 张桂莲. 基于遥感估算的上海城市森林碳储量空间分布特征[J]. 生态环境学报, 2021, 30(9): 1777-1786. |
[3] | 侯素霞, 张鉴达, 李静. 上海市大气污染物时空分布及其相关性因子分析[J]. 生态环境学报, 2021, 30(6): 1220-1228. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||