Ecology and Environment ›› 2023, Vol. 32 ›› Issue (6): 1133-1139.DOI: 10.16258/j.cnki.1674-5906.2023.06.015
• Research Articles • Previous Articles Next Articles
ZHOU Yuxiang1,*(), ZHAO Yu1, NIE Rendong1, DING Ding1, GUO Lihua2, ZHOU Jiazheng1
Received:
2023-02-26
Online:
2023-06-18
Published:
2023-09-01
Contact:
ZHOU Yuxiang
周玉祥1,*(), 赵玉1, 聂仁东1, 丁丁1, 郭立华2, 周佳峥1
通讯作者:
周玉祥
作者简介:
周玉祥(1979年生),男,讲师,博士,硕士研究生导师,主要从事矿山环境生态恢复与治理等科研工作。E-mail: 46103178@qq.com
CLC Number:
ZHOU Yuxiang, ZHAO Yu, NIE Rendong, DING Ding, GUO Lihua, ZHOU Jiazheng. Characterization and Prediction of Land Desertification in the Lower Liaohe River Plain[J]. Ecology and Environment, 2023, 32(6): 1133-1139.
周玉祥, 赵玉, 聂仁东, 丁丁, 郭立华, 周佳峥. 下辽河平原土地沙漠化程度及预测研究[J]. 生态环境学报, 2023, 32(6): 1133-1139.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.06.015
矩阵A | C1 | C2 | C3 | C4 | 权重(ωi) | 一致性检验 |
---|---|---|---|---|---|---|
C1 | 1.00 | 0.500 | 0.500 | 0.333 | 0.121 | CI=0.024 |
C2 | 2.00 | 1.00 | 0.500 | 0.500 | 0.190 | RI=0.890 |
C3 | 2.00 | 2.00 | 1.00 | 0.500 | 0.269 | CR=0.027<0.100 |
C4 | 3.00 | 2.00 | 2.00 | 1.00 | 0.420 | 满足要求 |
Table 1 Judgment Matrix A
矩阵A | C1 | C2 | C3 | C4 | 权重(ωi) | 一致性检验 |
---|---|---|---|---|---|---|
C1 | 1.00 | 0.500 | 0.500 | 0.333 | 0.121 | CI=0.024 |
C2 | 2.00 | 1.00 | 0.500 | 0.500 | 0.190 | RI=0.890 |
C3 | 2.00 | 2.00 | 1.00 | 0.500 | 0.269 | CR=0.027<0.100 |
C4 | 3.00 | 2.00 | 2.00 | 1.00 | 0.420 | 满足要求 |
样本 | C1 | C2 | C3 | C4 | SI |
---|---|---|---|---|---|
1 | 55.0 | 25.0 | 30.0 | 40.0 | 36.3 |
2 | 55.0 | 20.0 | 30.0 | 40.0 | 35.3 |
3 | 60.0 | 20.0 | 30.0 | 40.0 | 35.9 |
4 | 55.0 | 10.0 | 65.0 | 30.0 | 38.6 |
5 | 30.0 | 20.0 | 40.0 | 30.0 | 30.8 |
6 | 55.0 | 60.0 | 30.0 | 70.0 | 55.5 |
7 | 55.0 | 60.0 | 65.0 | 75.0 | 67.0 |
8 | 55.0 | 60.0 | 75.0 | 70.0 | 67.6 |
9 | 55.0 | 60.0 | 75.0 | 70.0 | 67.6 |
10 | 55.0 | 20.0 | 65.0 | 30.0 | 40.5 |
11 | 30.0 | 80.0 | 70.0 | 90.0 | 75.5 |
12 | 60.0 | 80.0 | 85.0 | 85.0 | 81.0 |
13 | 60.0 | 80.0 | 85.0 | 90.0 | 83.1 |
14 | 60.0 | 80.0 | 85.0 | 90.0 | 83.1 |
15 | 40.0 | 25.0 | 30.0 | 50.0 | 38.7 |
16 | 30.0 | 20.0 | 40.0 | 45.0 | 37.1 |
17 | 35.0 | 25.0 | 40.0 | 48.0 | 39.9 |
18 | 30.0 | 20.0 | 40.0 | 45.0 | 37.1 |
19 | 33.0 | 30.0 | 40.0 | 48.0 | 40.6 |
20 | 40.0 | 45.0 | 30.0 | 50.0 | 42.5 |
21 | 30.0 | 2.00 | 30.0 | 25.0 | 22.6 |
22 | 70.0 | 75.0 | 80.0 | 80.0 | 77.8 |
23 | 60.0 | 60.0 | 65.0 | 70.0 | 65.5 |
24 | 65.0 | 65.0 | 65.0 | 70.0 | 67.1 |
25 | 80.0 | 70.0 | 80.0 | 90.0 | 82.3 |
26 | 60.0 | 25.0 | 40.0 | 45.0 | 41.7 |
27 | 60.0 | 25.0 | 60.0 | 45.0 | 47.1 |
28 | 60.0 | 25.0 | 65.0 | 40.0 | 46.3 |
29 | 50.0 | 30.0 | 70.0 | 45.0 | 49.5 |
30 | 50.0 | 25.0 | 60.0 | 40.0 | 43.7 |
31 | 60.0 | 65.0 | 60.0 | 70.0 | 65.2 |
32 | 50.0 | 65.0 | 40.0 | 70.0 | 58.6 |
33 | 60.0 | 65.0 | 60.0 | 75.0 | 67.2 |
34 | 60.0 | 60.0 | 65.0 | 70.0 | 65.5 |
35 | 60.0 | 80.0 | 75.0 | 85.0 | 78.3 |
36 | 60.0 | 80.0 | 70.0 | 85.0 | 77.0 |
37 | 60.0 | 80.0 | 70.0 | 85.0 | 77.0 |
38 | 60.0 | 90.0 | 80.0 | 95.0 | 85.8 |
Table 2 Comprehensive scores of samples
样本 | C1 | C2 | C3 | C4 | SI |
---|---|---|---|---|---|
1 | 55.0 | 25.0 | 30.0 | 40.0 | 36.3 |
2 | 55.0 | 20.0 | 30.0 | 40.0 | 35.3 |
3 | 60.0 | 20.0 | 30.0 | 40.0 | 35.9 |
4 | 55.0 | 10.0 | 65.0 | 30.0 | 38.6 |
5 | 30.0 | 20.0 | 40.0 | 30.0 | 30.8 |
6 | 55.0 | 60.0 | 30.0 | 70.0 | 55.5 |
7 | 55.0 | 60.0 | 65.0 | 75.0 | 67.0 |
8 | 55.0 | 60.0 | 75.0 | 70.0 | 67.6 |
9 | 55.0 | 60.0 | 75.0 | 70.0 | 67.6 |
10 | 55.0 | 20.0 | 65.0 | 30.0 | 40.5 |
11 | 30.0 | 80.0 | 70.0 | 90.0 | 75.5 |
12 | 60.0 | 80.0 | 85.0 | 85.0 | 81.0 |
13 | 60.0 | 80.0 | 85.0 | 90.0 | 83.1 |
14 | 60.0 | 80.0 | 85.0 | 90.0 | 83.1 |
15 | 40.0 | 25.0 | 30.0 | 50.0 | 38.7 |
16 | 30.0 | 20.0 | 40.0 | 45.0 | 37.1 |
17 | 35.0 | 25.0 | 40.0 | 48.0 | 39.9 |
18 | 30.0 | 20.0 | 40.0 | 45.0 | 37.1 |
19 | 33.0 | 30.0 | 40.0 | 48.0 | 40.6 |
20 | 40.0 | 45.0 | 30.0 | 50.0 | 42.5 |
21 | 30.0 | 2.00 | 30.0 | 25.0 | 22.6 |
22 | 70.0 | 75.0 | 80.0 | 80.0 | 77.8 |
23 | 60.0 | 60.0 | 65.0 | 70.0 | 65.5 |
24 | 65.0 | 65.0 | 65.0 | 70.0 | 67.1 |
25 | 80.0 | 70.0 | 80.0 | 90.0 | 82.3 |
26 | 60.0 | 25.0 | 40.0 | 45.0 | 41.7 |
27 | 60.0 | 25.0 | 60.0 | 45.0 | 47.1 |
28 | 60.0 | 25.0 | 65.0 | 40.0 | 46.3 |
29 | 50.0 | 30.0 | 70.0 | 45.0 | 49.5 |
30 | 50.0 | 25.0 | 60.0 | 40.0 | 43.7 |
31 | 60.0 | 65.0 | 60.0 | 70.0 | 65.2 |
32 | 50.0 | 65.0 | 40.0 | 70.0 | 58.6 |
33 | 60.0 | 65.0 | 60.0 | 75.0 | 67.2 |
34 | 60.0 | 60.0 | 65.0 | 70.0 | 65.5 |
35 | 60.0 | 80.0 | 75.0 | 85.0 | 78.3 |
36 | 60.0 | 80.0 | 70.0 | 85.0 | 77.0 |
37 | 60.0 | 80.0 | 70.0 | 85.0 | 77.0 |
38 | 60.0 | 90.0 | 80.0 | 95.0 | 85.8 |
目标 等级 | 轻度 | 轻度 | 轻度 | 中度 | 轻度 | 轻度 | 重度 | 重度 | 轻度 | 重度 | 轻度 | 轻度 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AHP- RF | 轻度 | 轻度 | 中度 | 中度 | 轻度 | 轻度 | 重度 | 重度 | 轻度 | 重度 | 轻度 | 轻度 |
AHP- SVM | 轻度 | 轻度 | 轻度 | 中度 | 轻度 | 轻度 | 轻度 | 重度 | 轻度 | 轻度 | 轻度 | 轻度 |
Table 3 Comprehensive scores of samples
目标 等级 | 轻度 | 轻度 | 轻度 | 中度 | 轻度 | 轻度 | 重度 | 重度 | 轻度 | 重度 | 轻度 | 轻度 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AHP- RF | 轻度 | 轻度 | 中度 | 中度 | 轻度 | 轻度 | 重度 | 重度 | 轻度 | 重度 | 轻度 | 轻度 |
AHP- SVM | 轻度 | 轻度 | 轻度 | 中度 | 轻度 | 轻度 | 轻度 | 重度 | 轻度 | 轻度 | 轻度 | 轻度 |
[1] |
ABDELAZIZ A S, VIDAL-PANTALEONI A, BENTOUNES H A, 2017. Desertification monitoring in Biskra, Algeria, with landsat imagery by means of supervised classification and change detection methods[J]. Ieee Access, 5: 9065-9072.
DOI URL |
[2] |
AKBARI M, MODARRES R, NOUGHANI M A, 2020. Assessing early warning for desertification hazard based on E-SMART indicators in arid regions of northeastern Iran[J]. Journal of Arid Environments, 174: 104086.
DOI URL |
[3] |
ALDRICH C, 2020. Process variable importance analysis by use of random forests in a shapley regression framework[J]. Minerals, 10(5): 420.
DOI URL |
[4] |
BERGKAMP G, 1995. A hierarchical approach for desertification assessment[J]. Environmental Monitoring and Assessment, 37(1-3): 59-78.
DOI PMID |
[5] |
CHEN Q X, MENG D L, 1994. Evaluating weapon system by analytical hierarchy process-based on fuzzy scales[J]. Fuzzy Sets and Systems, 63(1): 1-10.
DOI URL |
[6] |
CHEN W, TSANGARATOS P, ILIA I, et al., 2019. Groundwater spring potential mapping using population-based evolutionary algorithms and data mining Methods[J]. Science of the Total Environment, 684(6): 31-49.
DOI URL |
[7] |
D'ODORICO P, BHATTACHAN A, DAVIS K F, et al., 2013. Global desertification: Drivers and feedbacks[J]. Advances in Water Resources, 51: 326-344.
DOI URL |
[8] | GONG Y F, ZHANG J, ZHOU J W, et al., 2021. Design and application of groundwater dynamic online monitoring system in Aeolian desertification area[J]. Energy Reports, 7(1): 505-511. |
[9] |
IMAMOGLU A, DENGIZ O, 2019. Evaluation of soil quality index to assess the influence of soil degradation and desertification process in sub-arid terrestrial ecosystem[J]. Rendiconti Lincei-Scienze Fisiche E Naturali, 30(4):723-734.
DOI |
[10] |
JIN Y F, WU Z X, YIN Z Y, SHEN S L, 2017. Estimation of critical state-related formula in advanced constitutive modeling of granular material[J]. Acta Geotechnica, 12(6): 1329-1351.
DOI URL |
[11] |
KAWANABE S, OSHIDA T, NAN Y H, et al., 2001. Practical study on farming development to overcome poverty in livestock farms in Keerqin Sand Land, Inner Mongolia, China[J]. Japan Agricultural Research Quarterly: JARQ, 35(3): 209-216.
DOI URL |
[12] |
KISIC I, BASIC F, NESTROY O, et al., 2002. Chemical properties of eroded soil material[J]. Journal of Agronomy and Crop Science, 188(5): 323-334.
DOI URL |
[13] |
KIM J R, LIN C W, LIN S Y, 2021. The use of InSAR phase coherence analyses for the monitoring of aeolian erosion[J]. Remote Sens, 13(12): 2240.
DOI URL |
[14] |
MUSAVI M T, AHMED W, CHAN K H, et al., 1992. On the training of radial basis function classifiers[J]. Neural Networks, 5(4): 595-603.
DOI URL |
[15] |
NGUYEN K A, CHEN W, 2021. DEM- and GIS-based analysis of soil erosion depth using machine learning[J]. ISPRS International Journal of Geo-Information, 10(7): 452.
DOI URL |
[16] |
ROBNIK-SIKONJA M, STRUMBELJ E, KONONENKO I, 2013. Efficiently explaining the predictions of a probabilistic radial basis function classification network[J]. Intelligent Data Analysis, 17(5): 791-802.
DOI URL |
[17] |
SUI Y Z, YUAN H M, 2006. Agroecological and economic approach of prevention and curing of sandstorms in China[J]. Ecological Economics, 61(1): 129-133.
DOI URL |
[18] | SA R, YIN S, BAO Y, et al., 2016. Change of desertification based on modis data in the mongolia border region[C]// Proceedings of the 7th Annual Meeting of Risk Analysis Council of China Association for Disaster Prevention, 128: 837-843. |
[19] | STERK G, STOORVOGEL J J, 2020. Ecology - landscape ecology; recent findings from University of Utrecht has provided new information about landscape ecology (desertification-scientific versus political realities)[J]. Ecology, Environment & Conservation. Land, 9: 156. |
[20] |
XU B X, HUANG Z X, WILLIAMS G, 2012. Classifying very high-dimensional data with random forests built from small subspaces[J]. International Journal of Data Warehousing and Mining, 8(2): 44-63.
DOI URL |
[21] |
XU E Q, ZHANG H Q, LI M X, 2015. Object-based mapping of karst rocky desertification using a support vector machine[J]. Land Degradation & Development, 26(2): 158-167.
DOI URL |
[22] |
XUE J, GUI D W, LEI J Q, et al., 2019. An unable evasive process in fighting against desertification for the sustainable development of arid and semiarid regions of China[J]. Catena, 179: 197-209.
DOI URL |
[23] |
YU C L, CHEN J P, 2020. Application of a GIS-based slope unit method for landslide susceptibility mapping in Helong City: Comparative assessment of ICM, AHP, and RF model[J]. Symmetry, 12(11): 1848.
DOI URL |
[24] |
YANG A N, et al., 2021. Gully erosion susceptibility mapping in highly complex terrain using machine learning models[J]. ISPRS International Journal of Geo-Information, 10(10): 680.
DOI URL |
[25] | 方匡南, 吴见彬, 朱建平, 等, 2011. 随机森林方法研究综述[J]. 统计与信息论坛, 26(3): 32-38. |
FANG K N, WU J B, ZHU J P, et al., 2011. A review of technologies on random forests[J]. Statistics & Information Forum, 26(3): 32-38. | |
[26] | 方静涛, 2020. 辽宁省海岸带地质环境综合评价研究[J]. 地质与资源, 29(1): 85-90, 100. |
FANG J T, 2020. Comprehensive evaluation on the geo-environment of coastal zones in Liaoning province[J]. Geology and Resources, 29(1): 85-90, 100. | |
[27] | 范泽孟, 李赛博, 2020. 中蒙俄经济走廊荒漠化时空格局变化及其驱动因子[J]. 生态学报, 40(13): 4252-4263. |
FAN Z M, LI S B, 2020. Spatio-temporal pattern change of desertification and its driving factors analysis in China- Mongolia-Russia economic corridor[J]. Acta Ecologica Sinica, 40(13): 4252-4263. | |
[28] | 马永欢, 樊胜岳, 姜德娟, 等, 2003. 我国北方土地荒漠化成因与草业发展研究[J]. 干旱区研究, 20(3): 217-220. |
MA Y H, FAN S Y, JIANG D J, et al., 2003. Study on the land desertification causes and the grass industry in north China[J]. Arid Zone Research, 20(3): 217-220. | |
[29] | 杨秀春, 朱晓华, 徐斌, 等, 2008. 辽西北地区土地荒漠化研究及其进展[J]. 灾害学, 23(2): 117-122. |
YANG X C, ZHU X H, XU B, et al., 2008. Research on land desertification of Northwestern Liaoning and the progress[J]. Journal of Catastrophology, 23(2): 117-122 |
[1] | WANG Chengwu, LUO Junjie, TANG Honghu. Analysis on the Driving Force of Spatial and Temporal Differentiation of Carbon Storage in the Taihang Mountains Based on InVEST Model [J]. Ecology and Environment, 2023, 32(2): 215-225. |
[2] | XIAO Jieyun, ZHOU Wei, SHI Peiqi. Hyperspectral Inversion of Soil Heavy Metals [J]. Ecology and Environment, 2023, 32(1): 175-182. |
[3] | ZHENG Xiaohao, CHEN Yingbiao, ZHENG Zihao, GUO Cheng, HUANG Zhounan, ZHOU Yongshi. Dynamic Changes of Ecosystem Service Value and Evolution of Its Influencing Factors in Hubei Province [J]. Ecology and Environment, 2023, 32(1): 195-206. |
[4] | LIAO Tong, XIONG Xin, WANG Zaihua, YANG Xiajie, HUANG Yingnan, FENG Jiaying. The Experience of Prevention and Control of Air Pollution in International Advanced Bay Areas and Its Enlightenment to Guangdong-Hong Kong-Macao Greater Bay Area in China [J]. Ecology and Environment, 2022, 31(11): 2242-2250. |
[5] | WANG Xuemei, YUMITI∙Maiming , MAO Donglei, LIANG Ting. Hyperspectral Estimation of Heavy Metal Chromium Content in Arable Soil of Arid Area Oasis [J]. Ecology and Environment, 2021, 30(10): 2076-2084. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn