Ecology and Environment ›› 2022, Vol. 31 ›› Issue (1): 110-116.DOI: 10.16258/j.cnki.1674-5906.2022.01.013
• Research Articles • Previous Articles Next Articles
LIAO Huimin(), SHI Fengqi*(
), LI Ming, ZHU Yilong
Received:
2021-08-14
Online:
2022-01-18
Published:
2022-03-10
Contact:
SHI Fengqi
通讯作者:
师凤起
作者简介:
廖慧敏(1977年生),女,副研究员,硕士研究生导师,主要从事安全与环保方向研究。E-mail: liaohuimin201@csu.edu.cn
基金资助:
CLC Number:
LIAO Huimin, SHI Fengqi, LI Ming, ZHU Yilong. Study on Dust Retention Rank and Pattern Recognition of Typical Garden Plant Leaves in Changsha[J]. Ecology and Environment, 2022, 31(1): 110-116.
廖慧敏, 师凤起, 李明, 朱逸龙. 长沙市典型园林植物叶片的滞尘等级与模式识别研究[J]. 生态环境学报, 2022, 31(1): 110-116.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.01.013
植物名称 Plant name | 叶表面积 Leaf surface area/cm2 | 指标 排序 Index order | 气孔密度 stomata density/ (ind∙mm-2) | 指标 排序 Index order | 绒毛密度 Pubescence density/ (ind∙mm-2) | 指标 排序 Index order | 单位叶面积自然滞尘量 Natrual dust retention amount per unit leaf area/(g∙m-2) | 指标 排序 Index order | 单位叶面积最大滞尘量 Maximum dust retretention amount per unit leaf area/ (g∙m-2) | 指标 排序 Index order |
---|---|---|---|---|---|---|---|---|---|---|
海桐 Pittosporum tobira | 16.51 | 6 | 184 | 8 | 0 | 6 | 0.85 | 7 | 3.36 | 9 |
红花檵木 Loropetalum chinense | 7.23 | 10 | 350 | 2 | 907 | 1 | 1.13 | 5 | 6.12 | 6 |
瓜子黄杨 Buxus sinica | 20.58 | 4 | 247 | 4 | 0 | 6 | 1.14 | 4 | 7.27 | 3 |
金叶女贞 Ligustrum×vicaryi | 10.13 | 8 | 800 | 1 | 234 | 4 | 1.59 | 1 | 9.54 | 1 |
金边黄杨 Euonymus japonicus | 7.04 | 9 | 233 | 6 | 0 | 6 | 1.35 | 2 | 8.19 | 2 |
冬青 Llex chinensis | 30.92 | 1 | 245 | 5 | 0 | 6 | 0.63 | 9 | 3.09 | 8 |
月季 Rosa chinensis | 25.79 | 2 | 122 | 10 | 0 | 6 | 0.44 | 10 | 2.22 | 10 |
杜鹃花 Rhododendron simsii | 12.93 | 7 | 168 | 9 | 163 | 5 | 0.82 | 8 | 4.17 | 7 |
红叶石楠 Photinia×fraseri | 21.27 | 3 | 212 | 7 | 320 | 2 | 1.16 | 3 | 7.26 | 4 |
小蜡 Ligustrum sinense | 19.46 | 5 | 330 | 3 | 295 | 3 | 0.98 | 6 | 6.37 | 5 |
Table 1 Evaluation index of dust retention of leaves of 10 plants
植物名称 Plant name | 叶表面积 Leaf surface area/cm2 | 指标 排序 Index order | 气孔密度 stomata density/ (ind∙mm-2) | 指标 排序 Index order | 绒毛密度 Pubescence density/ (ind∙mm-2) | 指标 排序 Index order | 单位叶面积自然滞尘量 Natrual dust retention amount per unit leaf area/(g∙m-2) | 指标 排序 Index order | 单位叶面积最大滞尘量 Maximum dust retretention amount per unit leaf area/ (g∙m-2) | 指标 排序 Index order |
---|---|---|---|---|---|---|---|---|---|---|
海桐 Pittosporum tobira | 16.51 | 6 | 184 | 8 | 0 | 6 | 0.85 | 7 | 3.36 | 9 |
红花檵木 Loropetalum chinense | 7.23 | 10 | 350 | 2 | 907 | 1 | 1.13 | 5 | 6.12 | 6 |
瓜子黄杨 Buxus sinica | 20.58 | 4 | 247 | 4 | 0 | 6 | 1.14 | 4 | 7.27 | 3 |
金叶女贞 Ligustrum×vicaryi | 10.13 | 8 | 800 | 1 | 234 | 4 | 1.59 | 1 | 9.54 | 1 |
金边黄杨 Euonymus japonicus | 7.04 | 9 | 233 | 6 | 0 | 6 | 1.35 | 2 | 8.19 | 2 |
冬青 Llex chinensis | 30.92 | 1 | 245 | 5 | 0 | 6 | 0.63 | 9 | 3.09 | 8 |
月季 Rosa chinensis | 25.79 | 2 | 122 | 10 | 0 | 6 | 0.44 | 10 | 2.22 | 10 |
杜鹃花 Rhododendron simsii | 12.93 | 7 | 168 | 9 | 163 | 5 | 0.82 | 8 | 4.17 | 7 |
红叶石楠 Photinia×fraseri | 21.27 | 3 | 212 | 7 | 320 | 2 | 1.16 | 3 | 7.26 | 4 |
小蜡 Ligustrum sinense | 19.46 | 5 | 330 | 3 | 295 | 3 | 0.98 | 6 | 6.37 | 5 |
λ值 λ value | 分类数 (r) Classification number (r) | F值 F value | 自由度 (r-1, n-r) Degrees of freed (r-1, n-r) | F0.05 | F0.01 |
---|---|---|---|---|---|
0.951 | 8 | 10.56 | 7, 1 | 236 | 5928 |
0.933 | 7 | 16.41 | 6, 2 | 19.33 | 99.33 |
0.922 | 6 | 8.09 | 5, 3 | 9.01 | 28.24 |
0.910 | 5 | 10.72* | 4, 4 | 6.39 | 15.98 |
0.907 | 4 | 21.41** | 3, 5 | 5.41 | 12.06 |
0.896 | 3 | 16.36** | 2, 6 | 5.14 | 10.92 |
0.869 | 2 | 2.85 | 1, 7 | 5.59 | 12.25 |
Table 2 F-test of every class under different λ levels
λ值 λ value | 分类数 (r) Classification number (r) | F值 F value | 自由度 (r-1, n-r) Degrees of freed (r-1, n-r) | F0.05 | F0.01 |
---|---|---|---|---|---|
0.951 | 8 | 10.56 | 7, 1 | 236 | 5928 |
0.933 | 7 | 16.41 | 6, 2 | 19.33 | 99.33 |
0.922 | 6 | 8.09 | 5, 3 | 9.01 | 28.24 |
0.910 | 5 | 10.72* | 4, 4 | 6.39 | 15.98 |
0.907 | 4 | 21.41** | 3, 5 | 5.41 | 12.06 |
0.896 | 3 | 16.36** | 2, 6 | 5.14 | 10.92 |
0.869 | 2 | 2.85 | 1, 7 | 5.59 | 12.25 |
聚类类别 Class of clustering | {U1, U6, U7, U8} | {U3, U5, U9} | {U2} | {U4} |
---|---|---|---|---|
滞尘等级 Dust retention rank | 低 Low | 中等 Middle | 较高 Higher | 高 Highest |
Table 3 The dust retention ability rank of 9 plants
聚类类别 Class of clustering | {U1, U6, U7, U8} | {U3, U5, U9} | {U2} | {U4} |
---|---|---|---|---|
滞尘等级 Dust retention rank | 低 Low | 中等 Middle | 较高 Higher | 高 Highest |
滞尘指标与贴近度 Dust-retention index and close degree | 滞尘等级模型 Dust retention models | 待识别样本 Identified sample | ||||
---|---|---|---|---|---|---|
U8 (杜鹃花) U8 (Rhododendron simsii) | U3 (瓜子黄杨) U3 (Buxus sinica) | U2 (红花檵木) U2 (Loropetalum chinense) | U4 (金叶女贞) U4 (Ligustrum×vicaryi) | U0 (小蜡) U0 (Ligustrum sinense) | ||
叶表面积 Leaf surface are | 0.25 | 0.57 | 0.01 | 0.14 | 0.52 | |
气孔密度 Stomata density | 0.07 | 0.18 | 0.34 | 1.00 | 0.31 | |
绒毛密度 Pubescence density | 0.18 | 0.00 | 1.00 | 0.26 | 0.33 | |
单位叶面积自然滞尘量 Natrual dust retention amount per unit leaf area | 0.33 | 0.61 | 0.60 | 1.00 | 0.47 | |
单位叶面积最大滞尘量 Maximum dust retretention amount per unit leaf area | 0.27 | 0.69 | 0.53 | 1.00 | 0.57 | |
贴近度 Close degree | 0.51 | 0.63 | 0.60 | 0.62 |
Table 4 The close degree between the sample and dust retention models
滞尘指标与贴近度 Dust-retention index and close degree | 滞尘等级模型 Dust retention models | 待识别样本 Identified sample | ||||
---|---|---|---|---|---|---|
U8 (杜鹃花) U8 (Rhododendron simsii) | U3 (瓜子黄杨) U3 (Buxus sinica) | U2 (红花檵木) U2 (Loropetalum chinense) | U4 (金叶女贞) U4 (Ligustrum×vicaryi) | U0 (小蜡) U0 (Ligustrum sinense) | ||
叶表面积 Leaf surface are | 0.25 | 0.57 | 0.01 | 0.14 | 0.52 | |
气孔密度 Stomata density | 0.07 | 0.18 | 0.34 | 1.00 | 0.31 | |
绒毛密度 Pubescence density | 0.18 | 0.00 | 1.00 | 0.26 | 0.33 | |
单位叶面积自然滞尘量 Natrual dust retention amount per unit leaf area | 0.33 | 0.61 | 0.60 | 1.00 | 0.47 | |
单位叶面积最大滞尘量 Maximum dust retretention amount per unit leaf area | 0.27 | 0.69 | 0.53 | 1.00 | 0.57 | |
贴近度 Close degree | 0.51 | 0.63 | 0.60 | 0.62 |
[1] |
BANERJEE S, BANERJEE A, PALIT D, et al., 2018. Assessment of vegetation under air pollution stress in urban industrial area for greenbelt development[J]. International journal of Environmental Science and Technology, 16(10): 1-14.
DOI URL |
[2] |
FREER SMITH P H, BECKETT K P, TAYLOR G, 2005. Deposition velocities to Sorbus aria, Acer campestre, Populus deltoides × trichocarpa ‘Beaupré’, Pinus nigra and×Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment[J]. Environment Pollution, 133(1): 157-167.
DOI URL |
[3] |
KATIA P, MARC O, SAVERIO G, et al, 2017. Quantification of fine dust deposition on different plant species in a vertical greening system[J]. Ecological Engineering, 100: 268-276.
DOI URL |
[4] |
PRUSTY B A K, MISHRA P C, AZEEZ P A, 2005. Dust accumulation and leaf pigment content in vegetation near the national highway at Sambalpur, Orissa, India[J]. Ecotoxicology and Environmental Safety, 60(2): 228-235.
DOI URL |
[5] | 曹旖旎, 吴灏, 沈立铭, 等, 2016. 城镇绿化树种叶片滞尘与重金属积累能力研究--以浙江省余姚市泗门镇为例[J]. 林业科学研究, 29(5): 662-669. |
CAO Y N, WU H, SHEN L M, et al., 2016. Analysis on the dust retention and heavy metal absorption ability ofleaves: a case study in Yuyao, Zhejiang Province[J]. Forest Research, 29(5): 662-669. | |
[6] | 高传友, 2016. 南宁市典型园林植物滞尘效应及生理特性研究[J]. 水土保持研究, 23(1): 187-192. |
GAO C Y, 2016. Research on dust retention capacities and physiological properties of different typical green plants in Nanning city[J]. Research of Soil and Water Conservation, 23(1): 187-192. | |
[7] | 李朝梅, 王军梦, 王腾飞, 等, 2021. 郑州市常见公园绿化植物的滞尘能力及叶片性状分析[J]. 西北林学院学报, 36(2): 123-129. |
LI C M, WANG J M, WANG T F, et al., 2021. Dust-retention Capability and Leaf of Common Park Greening Plant Species in Zhengzhou City[J]. Journal of Northwest Forestry University, 36(2): 123-129. | |
[8] | 李惠娟, 周德群, 魏永杰, 2018. 我国城市PM2.5污染的健康风险及经济损失评价[J]. 环境科学, 39(8): 3467-3475. |
LI H J, ZHOU D Q, WEI Y J, 2018. An assessment of PM2.5-related health risks and associated economic losses in Chinese cities[J]. Environmental Science, 39(8): 3467-3475. | |
[9] | 林鑫涛, 叶诺楠, 王彬, 等, 2016. 亚热带常绿树种对不同粒径颗粒物的滞留能力[J]. 广西植物, 32(2): 170-176. |
LIN X T, YE R N, WANG B, et al., 2016. Different sizes of particulate matters deposited on leaf of typical subtropical evergreen species[J]. Guihaia, 32(2): 170-176. | |
[10] | 刘晋熙, 2015. 六种常用垂直绿化植物滞尘能力研究[D]. 成都: 四川农业大学. |
LIU J X, 2015. Study on dust retention ability of six kinds of common vertical greening plants[D]. Chengdu: Sichuan Agricultural University. | |
[11] | 柳冬香, 2021. 福州市普通公路主要绿化树种叶片显微结构与滞尘能力[J]. 江西农业大学学报, 43(4): 853-865. |
LIU D X, 2021. Leaf microstructure and dust retention capacity of main greening tree species in Fuzhou City[J]. Acta Agriculturae Universitatis Jiangxiensis, 43(4): 853-865. | |
[12] | 史琛媛, 张玉梅, 路亚星, 等, 2015. 保定市几种常见绿化树种叶片滞尘能力研究[J]. 河北林果研究, 30(3): 289-294. |
SHI C Y, ZHANG Y M, LU Y X, et al., 2015. Study on leaf dust-retaining effect of common greening trees in Baoding city[J]. Hebei Journal of Forestry and Orchard Research, 30(3): 289-294. | |
[13] | 淑敏, 斯日木极, 姜涛, 等, 2018. 辽宁西北部主要绿化树种对空气颗粒物滞留能力研究[J]. 水土保持学报, 32(4): 297-303, 309. |
SHU M, SI R M J, JIANG T, et al., 2018. Retention capacity of the main urban afforest plant species for atmospheric particles in northwest of Liaoning province[J]. Journal of Soil and Water Conservation, 32(4): 297-303, 309. | |
[14] | 宋鹏程, 陆书玉, 魏永杰, 等, 2018. 上海市大气颗粒物生物毒性及二噁英呼吸暴露风险评价[J]. 中国环境科学, 38(5): 1961-1969. |
SONG P C, LU S Y, WEI Y J, et al., 2018. Biotoxicity effects and respiratory risk assessment of PCDD/Fs exposured to atmospheric particulates in Shanghai[J]. China Environmental Science, 38(5): 1961-1969. | |
[15] | 孙晓丹, 李海梅, 孙丽, 等, 2016. 8种灌木滞尘能力及叶表面结构研究[J]. 环境化学, 35(9): 1815-1822. |
SUN X D, LI H M, SUN L, et al., 2016. Dust-retaining capability and micro morphology structure of leaves of eight shrubs[J]. Environmental Chemistry, 35(9): 1815-1822. | |
[16] | 孙晓丹, 李海梅, 郭霄, 等, 2017. 10种灌木树种滞留大气颗粒物的能力[J]. 环境工程学报, 11(2): 1047-1054. |
SUN X D, LI H M, GUO X, et al., 2017. Atmospheric particulates-retaining capacity of ten shrubs species[J]. Chinese Journal of Environmental Engineering, 11(2): 1047-1054. | |
[17] | 孙应都, 陈奇伯, 李艳梅, 等, 2019. 昆明市6个绿化树种叶表微结构与滞尘能力的关系研究[J]. 西南林业大学学报(自然科学), 39(3): 78-85. |
SUN Y D, CHEN Q B, LI Y M, et al., 2019. Relationship between leaf structure and dust retention capacity of 6 greening tree species in Kunming[J]. Journal of Northwest Forestry University, 39(3): 78-85. | |
[18] | 王会霞, 石辉, 张雅静, 等, 2015. 大叶女贞叶面结构对滞留颗粒物粒径的影响[J]. 安全与环境学报, 15(1): 258-262. |
WANG H X, SHI H, ZHANG Y J, et al., 2015. Influence of surface structure on the particle size distribution captured by ligustrum lucidum[J]. Journal of Safety and Environment, 15(1): 258-262. | |
[19] | 王琴, 冯晶红, 黄奕, 等, 2020. 武汉市15种阔叶乔木滞尘能力与叶表微形态特征[J]. 生态学报, 40(1): 213-222. |
WANG Q, FENG J H, HUANG Y, et al., 2020. Dust-retention capability and leaf surface micromorphology of 15 broad-leaved tree species in Wuhan[J]. Acta Ecological Sinica, 40(1): 213-222. | |
[20] | 王亚军, 郁珊珊, 2016. 厦门市常见园林树种滞尘效应及生态特性研究[J]. 西南农业学报, 29(8): 1987-1992. |
WANG Y J, YU S S, 2016. Study on dust retention capacity and ecological characteristics of different green plants in Xiamen city[J]. South China Journal of Agricultural Science, 29(8): 1987-1992. | |
[21] | 习立洋, 周宏, 刘建峰, 等, 2020. 基于模糊聚类分析的船体分段类型分类方法和应用[J]. 船舶工程, 42(9): 110-114. |
XI L Y, ZHOU H, LIU J F, et al., 2020. Classification method and application of hull section type based on fuzzy clustering analysis[J]. Sheep Engineering, 42(9): 110-114. | |
[22] | 徐晓梧, 余新晓, 宝乐, 等, 2017. 模拟降雨对常绿植物叶表面滞尘的影响[J]. 生态学报, 37(20): 6785-6791. |
XIU X W, YU X X, BAO L, et al., 2017. Impact of simulated rainfall on leaf surface dust of evergreen plants[J]. Acta Ecological Sinica, 37(20): 6785-6791. | |
[23] | 闫倩, 徐立帅, 段永红, 等, 2021. 20种常用绿化树种叶面滞尘能力及滞尘粒度特征[J/OL]. 生态学杂志: 1-12 [2021-07-27]. http://libdb.csu.edu.cn:80/rwt/CNKI/https/MSYXTLUQPJUB/10.13292/j.1000-4890.202110.027. |
YAN Q, XU L S, DUAN Y H, et al., 2021. Dust retention ability and dust retention size characteristics of 20 commonly used greening tree species[J/OL]. Chinese Journal of Ecology: 1-12 [2021-07-27]. http://libdb.csu.edu.cn:80/rwt/CNKI/https/MSYXTLUQPJUB/10.13292/j.1000-4890.202110.027. | |
[24] | 阎少宏, 王宏, 2017. 模糊数学基础及应用[M]. 北京: 化学工业出版社: 39, 59. |
YAN S H, WANG H, 2017. Fuzzy Mathematics foundation and application[M]. Beijing: Chemical Industry Press: 39, 59. | |
[25] | 张桐, 洪秀玲, 孙立炜, 等, 2017. 6种植物叶片的滞尘能力与其叶面结构的关系[J]. 北京林业大学学报, 3(6): 70-77. |
ZHANG T, HONG X L, SUN L W, et al., 2017. Particle- retaining characteristics of six tree species and their relations with micro- configurations of leaf epidermis[J]. Journal of Beijing Forestry University, 3(6): 70-77. | |
[26] | 张维康, 王兵, 牛香, 2017. 不同树种叶片微观结构对其滞纳空气颗粒物功能的影响[J]. 生态学杂志, 36(9): 2507-2513. |
ZHANG W K, WANG B, NIU X, et al., 2017. The leaf microstructure of different trees and its impact on air particles-capturing ability[J]. Chinese Journal of Ecology, 36(9): 2507-2513. | |
[27] | 赵松婷, 李新宇, 李延明, 2016. 北京市常用园林植物滞留PM2.5能力的研究[J]. 西北林学院学报, 31(2): 280-287. |
ZHAO S T, LI X N, LI Y M, et al., 2016. Capability of common garden plants in Beijing to retain PM2.5[J]. Journal of Northwest Forestry University, 31(2): 280-287. | |
[28] | 周蕴薇, 田忠平, 苏欣, 2017. 哈尔滨市常见绿化树种叶表面形态与滞尘能力的关系[J]. 西北林学院学报, 32(1): 287-292. |
ZHOU Y W, TIAN Z P, SU X, 2017. Relationships between leaf epidermal morphology and dust capacity of common street trees in Harbin municipality[J]. Journal of Northwest Forestry University, 32(1): 287-292. |
[1] | RAN Xiaozhui, LIU Hongyan, TU Yu, GU Xiaofeng, YU Enjiang. Micro-morphology, Heavy Metal Distribution Characteristics and Health Risk Assessment of TSP: A Case Study in Typical Watershed with Superposition of Industry Pollution under High Geological Background in Northwest Guizhou [J]. Ecology and Environment, 2021, 30(12): 2339-2350. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn