Ecology and Environment ›› 2021, Vol. 30 ›› Issue (7): 1436-1446.DOI: 10.16258/j.cnki.1674-5906.2021.07.013
• Research Articles • Previous Articles Next Articles
DANG Huihui(), LIU Chao, WU Zhurong, WANG Yuanyuan, HU Zhenghua*(
), LI Qi, CHEN Shutao
Received:
2021-03-26
Online:
2021-07-18
Published:
2021-10-09
Contact:
HU Zhenghua
党慧慧(), 刘超, 伍翥嵘, 王圆媛, 胡正华*(
), 李琪, 陈书涛
通讯作者:
胡正华
作者简介:
党慧慧(1997年生),女,硕士研究生,研究方向为主要从事农业气象与气候变化研究。E-mail: 2431205531@qq.com
基金资助:
CLC Number:
DANG Huihui, LIU Chao, WU Zhurong, WANG Yuanyuan, HU Zhenghua, LI Qi, CHEN Shutao. Methane Emission and Comprehensive Benefits of Japonica Rice Paddy Field with Different Sowing Dates[J]. Ecology and Environment, 2021, 30(7): 1436-1446.
党慧慧, 刘超, 伍翥嵘, 王圆媛, 胡正华, 李琪, 陈书涛. 不同播期粳稻稻田甲烷排放及综合效益研究[J]. 生态环境学报, 2021, 30(7): 1436-1446.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.07.013
年份 Year | 处理 Treatment | 播种期 Sowing | 移栽期 Transplanting | 分蘖期 Tillering | 拔节期 Jointing | 抽穗期 Heading | 成熟期 Maturity |
---|---|---|---|---|---|---|---|
2019 | Ⅰ | Jun.1 | Jul.1 | Jul.1 | Aug.12 | Aug.31 | Oct.11 |
Ⅱ | Jun.11 | Jul.11 | Jul.11 | Aug.21 | Sept.7 | Oct.13 | |
2020 | Ⅰ | May.29 | Jun.28 | Jun.28 | Aug.6 | Aug.25 | Oct.15 |
Ⅱ | Jun.8 | Jul.8 | Jul.8 | Aug.14 | Aug.29 | Oct.17 |
Table 1 Critical growth stages of japonica rice under different sowing dates
年份 Year | 处理 Treatment | 播种期 Sowing | 移栽期 Transplanting | 分蘖期 Tillering | 拔节期 Jointing | 抽穗期 Heading | 成熟期 Maturity |
---|---|---|---|---|---|---|---|
2019 | Ⅰ | Jun.1 | Jul.1 | Jul.1 | Aug.12 | Aug.31 | Oct.11 |
Ⅱ | Jun.11 | Jul.11 | Jul.11 | Aug.21 | Sept.7 | Oct.13 | |
2020 | Ⅰ | May.29 | Jun.28 | Jun.28 | Aug.6 | Aug.25 | Oct.15 |
Ⅱ | Jun.8 | Jul.8 | Jul.8 | Aug.14 | Aug.29 | Oct.17 |
Fig. 1 Dynamic changes of soil temperature and moisture under different sowing dates Figures (a) and (b) shows the rice growing season in 2019, and figures (c) and (d) shows the rice growing season in 2020. The data were expressed as mean±SE
Fig. 2 Seasonal variation of CH4 emission flux from paddy fields under different sowing dates Figure (a) is the rice growing season in 2019, and figure (b) is the rice growing season in 2020. The data were expressed as mean±SE
Fig. 3 Cumulative amount of CH4 from paddy fields under different sowing dates Figure (a) is the rice growing season in 2019, and figure (b) is the rice growing season in 2020. The data value was mean±SE (n=3). Different small letters indicated significant differences among different sowing dates, and different capital letters indicated significant differences among different growth stage, P<0.05
年份 Year | 生育期 Growth Stage | 处理 Treatment | pH | 水溶性有机碳 w(DOC)/(mg·kg-1) | 铵态氮 w(NH4+-N)/(mg·kg-1) | 硝态氮 w(NO3--N)/(mg·kg-1) |
---|---|---|---|---|---|---|
2019 | 分蘖期 Tillering | Ⅰ | 6.80±0.07aA | 77.46±22.99aA | 49.72±5.11aA | 5.67±1.01aA |
Ⅱ | 6.47±0.09aA | 96.41±14.40aA | 40.95±4.44aB | 3.34±0.72aA | ||
成熟期 Maturity | Ⅰ | 6.46±0.09aB | 88.29±33.97aA | 28.17±1.67bB | 3.86±0.72aA | |
Ⅱ | 6.11±0.18aA | 61.09±14.39aA | 66.51±3.31aA | 3.47±0.69aA | ||
2020 | 分蘖期 Tillering | Ⅰ | 6.47±0.03aA | 110.53±1.52aA | 29.49±0.24aA | 4.37±0.19aA |
Ⅱ | 6.35±0.04aA | 103.51±3.82aA | 29.49±0.45aA | 5.87±0.67aA | ||
成熟期 Maturity | Ⅰ | 6.45±0.02aA | 114.91±4.64aA | 28.21±0.67aA | 2.50±0.41aB | |
Ⅱ | 6.40±0.04aA | 95.61±3.82bA | 29.26±0.31aA | 2.22±0.49aB |
Table 2 pH value, DOC, NH4+-N and NO3--N contents of soil at different sowing dates of rice
年份 Year | 生育期 Growth Stage | 处理 Treatment | pH | 水溶性有机碳 w(DOC)/(mg·kg-1) | 铵态氮 w(NH4+-N)/(mg·kg-1) | 硝态氮 w(NO3--N)/(mg·kg-1) |
---|---|---|---|---|---|---|
2019 | 分蘖期 Tillering | Ⅰ | 6.80±0.07aA | 77.46±22.99aA | 49.72±5.11aA | 5.67±1.01aA |
Ⅱ | 6.47±0.09aA | 96.41±14.40aA | 40.95±4.44aB | 3.34±0.72aA | ||
成熟期 Maturity | Ⅰ | 6.46±0.09aB | 88.29±33.97aA | 28.17±1.67bB | 3.86±0.72aA | |
Ⅱ | 6.11±0.18aA | 61.09±14.39aA | 66.51±3.31aA | 3.47±0.69aA | ||
2020 | 分蘖期 Tillering | Ⅰ | 6.47±0.03aA | 110.53±1.52aA | 29.49±0.24aA | 4.37±0.19aA |
Ⅱ | 6.35±0.04aA | 103.51±3.82aA | 29.49±0.45aA | 5.87±0.67aA | ||
成熟期 Maturity | Ⅰ | 6.45±0.02aA | 114.91±4.64aA | 28.21±0.67aA | 2.50±0.41aB | |
Ⅱ | 6.40±0.04aA | 95.61±3.82bA | 29.26±0.31aA | 2.22±0.49aB |
年份 Year | 生育期 Growth Stage | 处理 Treatment | 过氧化氢酶活性 Catalase activity/(mL∙g-1∙h-1) | 转化酶活性 Invertase activity/(mg∙g-1∙d-1) | 脲酶活性 Urease activity/(mg∙g-1∙d-1) |
---|---|---|---|---|---|
2019 | 分蘖期 Tillering | Ⅰ | 6.24±0.84aA | 64.30±2.47aA | 0.010±0.003bB |
Ⅱ | 7.89±0.23aA | 49.18±4.01bA | 0.043±0.004aA | ||
成熟期 Maturity | Ⅰ | 8.34±0.27aA | 32.10±2.07bB | 0.039±0.006aA | |
Ⅱ | 7.32±0.69aA | 48.66±4.41aA | 0.038±0.005aA | ||
2020 | 分蘖期 Tillering | Ⅰ | 10.47±0.09bA | 45.98±0.38bB | 0.345±0.013aA |
Ⅱ | 10.87±0.08aA | 50.28±1.15aB | 0.356±0.004aA | ||
成熟期 Maturity | Ⅰ | 10.75±0.19aA | 67.21±3.03aA | 0.312±0.009aA | |
Ⅱ | 9.71±0.04bB | 58.06±1.42aA | 0.299±0.007aB |
Table 3 Catalase, invertase and urease activities of soil at different sowing dates of rice
年份 Year | 生育期 Growth Stage | 处理 Treatment | 过氧化氢酶活性 Catalase activity/(mL∙g-1∙h-1) | 转化酶活性 Invertase activity/(mg∙g-1∙d-1) | 脲酶活性 Urease activity/(mg∙g-1∙d-1) |
---|---|---|---|---|---|
2019 | 分蘖期 Tillering | Ⅰ | 6.24±0.84aA | 64.30±2.47aA | 0.010±0.003bB |
Ⅱ | 7.89±0.23aA | 49.18±4.01bA | 0.043±0.004aA | ||
成熟期 Maturity | Ⅰ | 8.34±0.27aA | 32.10±2.07bB | 0.039±0.006aA | |
Ⅱ | 7.32±0.69aA | 48.66±4.41aA | 0.038±0.005aA | ||
2020 | 分蘖期 Tillering | Ⅰ | 10.47±0.09bA | 45.98±0.38bB | 0.345±0.013aA |
Ⅱ | 10.87±0.08aA | 50.28±1.15aB | 0.356±0.004aA | ||
成熟期 Maturity | Ⅰ | 10.75±0.19aA | 67.21±3.03aA | 0.312±0.009aA | |
Ⅱ | 9.71±0.04bB | 58.06±1.42aA | 0.299±0.007aB |
指标 Index | 水溶性有机碳 DOC | 铵态氮 NH4+-N | 硝态氮 NO3--N | 转化酶 Invertase | 脲酶 Urease |
---|---|---|---|---|---|
2019年CH4通量 CH4 flux in 2019 | 0.207 | -0.208 | 0.163 | 0.348 | 0.010 |
2020年CH4通量 CH4 flux in 2020 | 0.130 | -0.181 | 0.375 | 0.088 | 0.147 |
Table 4 Pearson correlation analysis of average CH4 emission flux with soil physicochemical and enzyme activities
指标 Index | 水溶性有机碳 DOC | 铵态氮 NH4+-N | 硝态氮 NO3--N | 转化酶 Invertase | 脲酶 Urease |
---|---|---|---|---|---|
2019年CH4通量 CH4 flux in 2019 | 0.207 | -0.208 | 0.163 | 0.348 | 0.010 |
2020年CH4通量 CH4 flux in 2020 | 0.130 | -0.181 | 0.375 | 0.088 | 0.147 |
年份 Year | 处理 Treatment | CH4增温潜势 CH4 warming potential/(kg·hm-2) | CH4增温潜势成本 CH4 warming potential costs/(yuan·hm-2) | 水稻产量 Rice yield/ (kg·hm-2) | 水稻产量经济效益 The economic benefits of rice production/(yuan·hm-2) | 基于CH4减排的水稻生产综合效益 Comprehensive benefits based on CH4 emission reduction/(yuan·hm-2) |
---|---|---|---|---|---|---|
2019 | Ⅰ | 1930.17±41.34a | 80a | 10102.00±244.49a | 11720a | 11640a |
Ⅱ | 1632.09±37.08b | 68b | 8298.75±309.38b | 7032b | 6964b | |
2020 | Ⅰ | 3513.97±280.16 | 146 | 11687.33±170.29a | 15842a | 15696a |
Ⅱ | 2589.58±458.51 | 108 | 8051.48±118.13b | 6389b | 6281b |
Table 5 Comprehensive benefits of rice production based on CH4 emission reduction under different sowing dates
年份 Year | 处理 Treatment | CH4增温潜势 CH4 warming potential/(kg·hm-2) | CH4增温潜势成本 CH4 warming potential costs/(yuan·hm-2) | 水稻产量 Rice yield/ (kg·hm-2) | 水稻产量经济效益 The economic benefits of rice production/(yuan·hm-2) | 基于CH4减排的水稻生产综合效益 Comprehensive benefits based on CH4 emission reduction/(yuan·hm-2) |
---|---|---|---|---|---|---|
2019 | Ⅰ | 1930.17±41.34a | 80a | 10102.00±244.49a | 11720a | 11640a |
Ⅱ | 1632.09±37.08b | 68b | 8298.75±309.38b | 7032b | 6964b | |
2020 | Ⅰ | 3513.97±280.16 | 146 | 11687.33±170.29a | 15842a | 15696a |
Ⅱ | 2589.58±458.51 | 108 | 8051.48±118.13b | 6389b | 6281b |
[1] | BHATTACHARYYA P, ROY K S, NEOGI S, et al., 2013. Impact of elevated CO2 and temperature on soil C and N dynamics in relation to CH4 and N2O emissions from tropical flooded rice (Oryza sativa L.) - ScienceDirect[J]. Science of The Total Environment, 461-462: 601-611. |
[2] | WANG C, LAI D Y F, TONG C, et al., 2015. Variations in temperature sensitivity (Q10) of CH4 emission from a subtropical estuarine marsh in southeast China[J]. Plos One, 10(5): 5-12. |
[3] |
DORICH R A, NELSON D W, 1984. Evaluation of manual cadmium reduction methods for determination of nitrate in potassium chloride extracts of soil[J]. Soil Science Society of America Journal, 48: 1(1): 72-75.
DOI URL |
[4] |
DAS K, BARUAH K K, 2008. A comparison of growth and photosynthetic characteristics of two improved rice cultivars on methane emission from rainfed agroecosystem of northeast India[J]. Agriculture Ecosystems & Environment, 124(1-2): 105-113.
DOI URL |
[5] |
GOPAL M, GUPTA A, ARUNACHALAM V, et al., 2007. Impact of azadirachtin, an insecticidal allelochemical from neem on soil microflora, enzyme and respiratory activities[J]. Bioresource Technology, 98(16): 3154-3158.
DOI URL |
[6] | GE H X, ZHANG H S, ZHANG H, et al., 2018. The characteristics of methane flux from an irrigated rice farm in east China measured using the eddy covariance method[J]. Agricultural & Forest Meteorology, 249: 228-238. |
[7] | IPCC, 2013. Working GroupⅠcontribution to the IPCC Fifth AS sessment Report (AR5). Climate change 2013: The Physical Science Basis. Final Draft Underlying Scientific-Technical Assessment[R/OL].[2013-10-30]. |
[8] |
JOHNSON J L, TEMPLE K L, 1964. Some variables affecting the measurement of “catalase activity” in soil[J]. Soil Science Society of America Journal, 28(2): 207-209.
DOI URL |
[9] | KEMPERS A J, ZWEERS A, 1986. Ammonium determination in soil extracts by the salicylate acid method[J]. Communications in Soil Science & Plant Analysis, 17(7): 715-723. |
[10] |
KIRSCHKE S, BOUSQUET P, CIAIS P, et al., 2013. Three decades of global methane sources and sinks[J]. Nature Geoscience, 6(10): 813-823.
DOI URL |
[11] | KANDELER E, GERBER H, 1988. Short-term assay of soil urease activity using colorimetric determination of ammonium[J]. Biology & Fertility of Soils, 6(1): 68-72. |
[12] | LI H, GUO H Q, HELBIG M, et al., 2019. Does direct-seeded rice decrease ecosystem-scale methane emissions?—A case study from a rice paddy in southeast China[J]. Agricultural and Forest Meteorology, 272-273: 118-127. |
[13] |
SIMMONDS M B, MERLE A, ARLENE A, et al., 2015. Seasonal methane and nitrous oxide emissions of several rice cultivars in direct-seeded systems[J]. Journal of Environmental Quality, 44(1): 103-113.
DOI URL |
[14] | QUAN Y, JUDITH P, RALF C, et al., 2012. Partitioning of CH4 and CO2 production originating from rice straw, soil and root organic carbon in rice microcosms[J]. Plos One, 7(11): 3-7. |
[15] |
SAUNOIS M, STAVERT A R, POULTER B, et al., 2020. The global methane budget 2000-2017 [J]. Earth System Science Data, 12(3): 1561-1623.
DOI URL |
[16] |
TOKIDA T, ADACHI M, CHENG W, et al., 2011. Methane and soil CO2 production from current-season photosynthates in a rice paddy exposed to elevated CO2 concentration and soil temperature[J]. Global Change Biology, 17(11): 3327-3337.
DOI URL |
[17] | WANG W, LAI D Y F, WANG C, et al., 2016. Effects of inorganic amendments, rice cultivars and cultivation methods on greenhouse gas emissions and rice productivity in a subtropical paddy field[J]. Ecological engineering: The Journal of Ecotechnology, 95: 770-778. |
[18] | 艾磊, 2016. 不同生态区播期对粳稻生育进程、产量及品质的影响[D]. 武汉: 华中农业大学: 23-52. |
AI L, 2016. Effects of sowing date on growth period, yield and quality of Japonica rice in different ecological regions[D]. Wuhan: Huazhong Agricultural University: 23-52. | |
[19] | 符冠富, 王丹英, 李华, 等, 2009. 水稻不同生育期温光条件对籽粒充实和米质的影响[J]. 中国农业气象, 30(3): 375-382. |
FU G F, WANG D Y, LI H, et al., 2009. Influence of temperature and sunlight conditions on rice grain filling and quality in different growth stages[J]. Chinese Journal of Agrometeorology, 30(3): 375-382. | |
[20] | 甘德欣, 2003. 稻鸭共栖免耕减排甲烷机制及综合效益研究[D]. 长沙: 湖南农业大学: 64-67. |
GAN D X, 2003. A study on the mechanism of mitigating methane and ingredient benefits of no-tillage in rice-duck complex system[D]. Changsha: Hunan Agricultural University: 64-67. | |
[21] | 韩广轩, 朱波, 高美荣, 等, 2003. 中国稻田甲烷排放研究进展[J]. 西南农业学报, 16(S1): 49-54. |
HAN G X, ZHU B, GAO M R, et al., 2003. Research progress on methane emission from rice field in China[J]. Southwest China Journal of Agricultural Sciences, 16(S1): 49-54. | |
[22] | 贾庆宇, 李晓岚, 于文颖, 等, 2020. 温度对东北平原水稻田甲烷排放的影响[J]. 生态环境学报, 29(1): 1-10. |
JIA Q Y, LI X L, YU W Y, et al., 2020. Effect of temperature on methane emission over paddy fields in Northeast Plain[J]. Ecology and Environmental Sciences, 29(1): 1-10. | |
[23] | 江瑜, 管大海, 张卫建, 2018. 水稻植株特性对稻田甲烷排放的影响及其机制的研究进展[J]. 中国生态农业学报, 26(2): 175-181. |
JIANG Y, GUAN D H, ZHANG W J, 2018. The effect of rice plant traits on methane emissions from paddy fields: A review[J]. Chinese Journal of Eco-Agriculture, 26(2): 175-181. | |
[24] | 焦燕, 黄耀, 宗良纲, 等, 2002. 土壤理化特性对稻田CH4排放的影响[J]. 环境科学, 23(5): 1-7. |
JIAO Y, HUANG Y, ZONG L G, et al., 2002. Methane emission from rice paddy soils as influenced by soil physico-chemical properties[J]. Environmental Science, 23(5): 1-7.
DOI URL |
|
[25] | 盛锋, 2019. 稻鸭共育对稻田环境的影响及效益评估[D]. 武汉: 华中农业大学: 64-71. |
SHENG F, 2019. Effects of rice-duck farming on rice field environment and its benefit evaluation[D]. Wuhan: Huazhong Agricultural University: 64-71. | |
[26] | 沈学良, 田光蕾, 周元昌, 等, 2020. 水稻生物学特性对稻田甲烷排放的影响[J]. 农学学报, 10(2): 75-80. |
SHEN X L, TIAN G L, ZHOU Y C, et al., 2020. Rice biological characteristics: Effects on methane emission from paddy fields[J]. Journal of Agriculture, 10(2): 75-80. | |
[27] | 田昌, 周旋, 黄思怡, 等, 2019. 控释尿素减施对稻田CH4和N2O排放及经济效益的影响[J]. 生态环境学报, 28(11): 2223-2230. |
TIAN C, ZHOU X, HUANG S Y, et al., 2019. Effects of controlled-release urea reduction on CH4 and N2O emissions and its economic benefits in double cropping paddy fields[J]. Ecology and Environmental Sciences, 28(11): 2223-2230. | |
[28] | 魏海苹, 孙文娟, 黄耀, 2012. 中国稻田甲烷排放及其影响因素的统计分析[J]. 中国农业科学, 45(17): 3531-3540. |
WEI H P, SUN W J, HUANG Y, 2012. Statistical analysis of methane emission from rice fields in China and the driving factors[J]. Scientia Agricultura Sinica, 45(17): 3531-3540. | |
[29] | 尉海东, 2013. 稻田甲烷排放研究进展[J]. 中国农学通报, 29(18): 6-10. |
WEI H D, 2013. Research progress on methane emission from paddy fields[J]. Chinese Agricultural Science Bulletin, 29(18): 6-10. | |
[30] | 汪伟, 裘实, 朱大伟, 等, 2018. 播期对不同软米粳稻品种产量、生育期及温光资源利用的影响[J]. 中国稻米, 24(2): 79-83. |
WANG W, QIU S, ZHU D W, et al., 2018. Effects of sowing date on yield, growth period and utilization of temperature and lightin different japonica rice cultivars[J]. China Rice, 24(2): 79-83. | |
[31] | 许轲, 孙圳, 霍中洋, 等, 2013. 播期、品种类型对水稻产量、生育期及温光利用的影响[J]. 中国农业科学, 46(20): 4222-4233. |
XU K, SUN Z, HUO Z Y, et al., 2013. Effects of seeding date and variety type on yield, growth stage and utilization of temperature and sunshine in rice[J]. Scientia Agricultura Sinica, 46(20): 4222-4233. | |
[32] | 徐年龙, 于洪喜, 叶仁宏, 等, 2020. 播期和栽插方式对水稻南粳9108产量和品质的影响[J]. 大麦与谷类科学, 37(1): 15-21. |
XU N L, YU H X, YE R H, et al., 2020. Effects of sowing date and transplanting methodonthe yield and quality of the rice cultivar Nanjing 9108[J]. Barley and Cereal Sciences, 37(1): 15-21. | |
[33] | 占新华, 周立祥, 2002. 土壤溶液和水体中水溶性有机碳的比色测定[J]. 中国环境科学, 22(5): 433-437. |
ZHAN X H, ZHOU L X, 2002. Colorimetric determination of dissolved organic carbon in soil solution and water environment[J]. China Environmental Science, 22(5): 433-437. | |
[34] | 甄丽莎, 谷洁, 高华, 等, 2012. 秸秆还田与施肥对土壤酶活性和作物产量的影响[J]. 西北植物学报, 32(9): 1811-1818. |
ZHEN L S, GU J, GAO H, et al., 2012. Effect of straws, manure and chemical fertilizer on soil properties and crop yields[J]. Acta Botanica Boreali-Occidentalia Sinica, 32(9): 1811-1818. | |
[35] | 周旋, 吴良欢, 戴锋, 2017. 生化抑制剂组合与施肥模式对黄泥田水稻产量和经济效益的影响[J]. 生态学杂志, 36(12): 3517-3525. |
ZHOU X, WU L H, DAI F, 2017. Effects of biochemical inhibitor combination and fertilization mode on rice yield and economic benefit in yellow clayey field[J]. Chinese Journal of Ecology, 36(12): 3517-3525. | |
[36] | 周文涛, 戈家敏, 王勃然, 等, 2020. 不同水稻品种甲烷排放与土壤酶的关系[J]. 农业环境科学学报, 39(11): 2675-2682. |
ZHOU W T, GE J M, WANG B R, et al., 2020. Relationships between methane emissions and soil enzymes of different rice varieties[J]. Journal of Agro-Environment Science, 39(11): 2675-2682. |
[1] | HU Qirui, JI Chunrong, LI Yingchun, WANG Xuejiao, YANG Mingfeng, GUO Yanyun. Effects of Drought Stress on Photosynthetic Characteristics and Yield of Cotton at Bud Stage under Mulched Drip Irrigation [J]. Ecology and Environment, 2023, 32(6): 1045-1052. |
[2] | WANG Jing, MENG Ke, CHEN Xuan, ZHANG Jiaen, XIANG Huimin, ZHONG Jiawen, SHI Zhaoji. Effects of Acid Rain on Yield, Quality and Physiological Characteristics of Lettuce and Brassica chinensis L. [J]. Ecology and Environment, 2023, 32(6): 1098-1107. |
[3] | LI Chengwei, LIU Zhangyong, GONG Songling, YANG Wei, LI Shaoqiu, ZHU Bo. Effects of Changing Rice Cropping Patterns on CH4 and N2O Emissions from Paddy Fields [J]. Ecology and Environment, 2022, 31(5): 961-968. |
[4] | LIU Jiang, ZHU Lijie, ZHANG Kai, WANG Xiaoming, WANG Liwei, GAO Xining. Effects of Drought Stress/Rewatering on Photosynthetic Characteristics and Yield of Soybean at Different Growth Stages [J]. Ecology and Environment, 2022, 31(2): 286-296. |
[5] | HUANG Qiaoyi, YU Junhong, HUANG Jianfeng, HUANG Xu, LI Ping, FU Hongting, TANG Shuanhu, LIU Yifeng, XU Peizhi. Nutrient Resources of Main Crop Straw and Its Potential of Substituting for Chemical Fertilizer in Guangdong Province [J]. Ecology and Environment, 2022, 31(2): 297-306. |
[6] | SUN Xuejiao, LI Jimei, ZHANG Yutao, LI Xiang, LU Jianjiang, SHE Fei. Characteristics and Influence of Runoff and Sediment Yield in Mountain Forest on the North Slope of Tianshan Mountains [J]. Ecology and Environment, 2021, 30(9): 1821-1830. |
[7] | ZHANG Kai, WANG Liwei, GAO Xining, HE Minghui. Effects of Nitrogen Management on the Potential of N2O Emission Reduction and Yield Increase in Potato Field under Different Precipitation Patterns Based on DNDC Model [J]. Ecology and Environment, 2021, 30(8): 1672-1682. |
[8] | ZHU Yongyong, SONG Bingxi, YANG Wangmin, ZHANG Yupeng, GAO Zhihong, CHEN Xiaoyuan. Effects of Reduced Nitrogen Application on Rice Growth, Yield and Economy Profits under Dry Farming Conditions [J]. Ecology and Environment, 2021, 30(11): 2150-2156. |
[9] | WU Yan, JIN Tuo, WANG Yuefei, HE Pengcheng, LUO Jun, LIU Hongjin, ZHANG Lei, GUO Xiaoyu, CHEN Ruiying. Feasibility Analysis of PBAT/PLA Biodegradable Plastic Film for Potatoes in the Northern Foot of Yinshan Mountain in Inner Mongolia [J]. Ecology and Environment, 2021, 30(10): 2100-2108. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn