生态环境学报 ›› 2025, Vol. 34 ›› Issue (12): 1919-1929.DOI: 10.16258/j.cnki.1674-5906.2025.12.009
收稿日期:2025-04-15
出版日期:2025-12-18
发布日期:2025-12-10
作者简介:熊丽君(1977年生),女,正高级工程师,博士,研究方向为水环境和水生态。E-mail: xionglj@saes.sh.cn
基金资助:Received:2025-04-15
Online:2025-12-18
Published:2025-12-10
摘要: 气候变化下高强度降雨频发,非点源污染流失更为复杂,其排放规律有待于进一步研究,以期为水源地水环境污染精细化防控提供依据。根据中雨、大雨和大暴雨下野外监测数据,分析水源地典型下垫面非点源污染动态排放规律和初期冲刷效应。结果表明:3场降雨下交通道路和村镇住宅径流系数为0.55-0.99,水田、菜地和林地径流系数为0-0.71,径流峰值后者比前者滞后4-12 h;交通道路COD、TN、TP通量峰值分别高于村镇住宅0.10-0.53、0.01-0.04、0.0047-0.0006 g·h−1·m−2,大暴雨下水田和菜地更高,分别是交通道路的1.3-1.6、4.0-5.4和2.9-4.6倍;交通道路和村镇住宅COD、TN、TP的降雨事件平均浓度(EMC)中雨是大暴雨的1.4-1.7、6.5-7.8和5.9-6.6倍,晴天日数长的中雨事件污染物EMC更高;大暴雨下3种污染物负荷系数菜地相对最高,分别是水田、交通道路、林地和村镇住宅的1.2-1.5、1.4-6.8、3.2-8.1和2.2-10.6倍;3种污染物初期冲刷比率RMFF30中雨和大雨下COD>TN>TP,大暴雨下TP和TN总体大于COD;COD和TN的RMFF30交通道路和村镇住宅总体高于菜地、水田和林地,截留30%径流分别拦截30%-72%和33%-39%负荷;TP的RMFF30菜地、水田和林地高于交通道路和村镇住宅,截留30%径流分别拦截58%-62%和20%-52%负荷。因此,在中大雨时应重点关注不透水下垫面非点源污染,特别是前期晴天日数较长的降雨事件;在高峰值大暴雨时还应关注农田非点源污染,其通量峰值和初期冲刷负荷可能会对水源地水质造成不利影响。
中图分类号:
熊丽君. 不同降雨特征下水源地下垫面非点源污染排放规律[J]. 生态环境学报, 2025, 34(12): 1919-1929.
XIONG Lijun. Emission Patterns of Non-point Source Pollution from Underlying Surfaces under Different Rainfall Characteristics in Water Source Areas[J]. Ecology and Environmental Sciences, 2025, 34(12): 1919-1929.
| 序号 | 日期 | 雨型 | 雨量/mm | 历时/h | 前期晴天日数/d | 峰值/(mm∙h−1) | 平均雨强/(mm∙h−1) |
|---|---|---|---|---|---|---|---|
| 1 | 20230404 | 中雨 | 21.9 | 10 | 13.8 | 3.6 | 2.2 |
| 2 | 20230618 | 大雨 | 31.8 | 13 | 0.25 | 8.9 | 2.5 |
| 3 | 20230623 | 大暴雨 | 124.8 | 23 | 4.10 | 17.2 | 5.4 |
表1 监测降雨事件的特征因子
Table 1 Characteristics of three rainfall events
| 序号 | 日期 | 雨型 | 雨量/mm | 历时/h | 前期晴天日数/d | 峰值/(mm∙h−1) | 平均雨强/(mm∙h−1) |
|---|---|---|---|---|---|---|---|
| 1 | 20230404 | 中雨 | 21.9 | 10 | 13.8 | 3.6 | 2.2 |
| 2 | 20230618 | 大雨 | 31.8 | 13 | 0.25 | 8.9 | 2.5 |
| 3 | 20230623 | 大暴雨 | 124.8 | 23 | 4.10 | 17.2 | 5.4 |
图4 3场降雨下非点源污染通量响应过程 0618大雨下菜地径流量很少,仅采集1个样品,通量远低于其他下垫面,因此不在图中显示
Figure 4 Dynamic response processes of NPS pollution fluxes under three rainfall events
| 污染物 | 雨型 | 统计值 | 交通道路 | 菜地 | 水田 | 村镇住宅 | 林地 |
|---|---|---|---|---|---|---|---|
| COD | 中雨 | 最大RMFFn | 1.5 | - | - | 1.5 | - |
| 累积径流比 | 39% | - | - | 42% | - | ||
| 累积负荷比 | 59% | - | - | 60% | - | ||
| 大雨 | 最大RMFFn | 1.7 | - | - | 1.5 | - | |
| 累积径流比 | 25% | - | - | 27% | - | ||
| 累积负荷比 | 41% | - | - | 41% | - | ||
| 大暴雨 | 最大RMFFn | 1.5 | 1.6 | 1.6 | 1.4 | 1.2 | |
| 累积径流比 | 33% | 33% | 43% | 36% | 31% | ||
| 累积负荷比 | 48% | 57% | 68% | 50% | 37% | ||
| TN | 中雨 | 最大RMFFn | 1.2 | - | - | 1.1 | - |
| 累积径流比 | 39% | - | - | 42% | - | ||
| 累积负荷比 | 48% | - | - | 47% | - | ||
| 大雨 | 最大RMFFn | 1.4 | - | - | 1.1 | - | |
| 累积径流比 | 25% | - | - | 27% | - | ||
| 累积负荷比 | 34% | - | - | 29% | - | ||
| 大暴雨 | 最大RMFFn | 2.4 | 1.3 | 1.3 | 2.5 | 1.1 | |
| 累积径流比 | 33% | 39% | 43% | 28% | 27% | ||
| 累积负荷比 | 78% | 49% | 56% | 69% | 28% | ||
| TP | 中雨 | 最大RMFFn | 1.1 | - | - | 1.0 | - |
| 累积径流比 | 39% | - | - | 86% | - | ||
| 累积负荷比 | 43% | - | - | 88% | - | ||
| 大雨 | 最大RMFFn | 1.1 | - | - | 1.0 | - | |
| 累积径流比 | 32% | - | - | 61% | - | ||
| 累积负荷比 | 61% | - | - | 58% | - | ||
| 大暴雨 | 最大RMFFn | 2.1 | 1.9 | 2.1 | 1.8 | 2.1 | |
| 累积径流比 | 15% | 24% | 29% | 28% | 22% | ||
| 累积负荷比 | 31% | 47% | 59% | 50% | 46% |
表2 最大MFFn对应的累积径流比及负荷比
Table 2 Cumulative runoff ratio and load ratio corresponding to maximum MFFn
| 污染物 | 雨型 | 统计值 | 交通道路 | 菜地 | 水田 | 村镇住宅 | 林地 |
|---|---|---|---|---|---|---|---|
| COD | 中雨 | 最大RMFFn | 1.5 | - | - | 1.5 | - |
| 累积径流比 | 39% | - | - | 42% | - | ||
| 累积负荷比 | 59% | - | - | 60% | - | ||
| 大雨 | 最大RMFFn | 1.7 | - | - | 1.5 | - | |
| 累积径流比 | 25% | - | - | 27% | - | ||
| 累积负荷比 | 41% | - | - | 41% | - | ||
| 大暴雨 | 最大RMFFn | 1.5 | 1.6 | 1.6 | 1.4 | 1.2 | |
| 累积径流比 | 33% | 33% | 43% | 36% | 31% | ||
| 累积负荷比 | 48% | 57% | 68% | 50% | 37% | ||
| TN | 中雨 | 最大RMFFn | 1.2 | - | - | 1.1 | - |
| 累积径流比 | 39% | - | - | 42% | - | ||
| 累积负荷比 | 48% | - | - | 47% | - | ||
| 大雨 | 最大RMFFn | 1.4 | - | - | 1.1 | - | |
| 累积径流比 | 25% | - | - | 27% | - | ||
| 累积负荷比 | 34% | - | - | 29% | - | ||
| 大暴雨 | 最大RMFFn | 2.4 | 1.3 | 1.3 | 2.5 | 1.1 | |
| 累积径流比 | 33% | 39% | 43% | 28% | 27% | ||
| 累积负荷比 | 78% | 49% | 56% | 69% | 28% | ||
| TP | 中雨 | 最大RMFFn | 1.1 | - | - | 1.0 | - |
| 累积径流比 | 39% | - | - | 86% | - | ||
| 累积负荷比 | 43% | - | - | 88% | - | ||
| 大雨 | 最大RMFFn | 1.1 | - | - | 1.0 | - | |
| 累积径流比 | 32% | - | - | 61% | - | ||
| 累积负荷比 | 61% | - | - | 58% | - | ||
| 大暴雨 | 最大RMFFn | 2.1 | 1.9 | 2.1 | 1.8 | 2.1 | |
| 累积径流比 | 15% | 24% | 29% | 28% | 22% | ||
| 累积负荷比 | 31% | 47% | 59% | 50% | 46% |
| [1] |
GRACE III J M, 2017. Predicting forest road surface erosion and storm runoff from high-elevation sites[J]. Transactions of the ASABE, 60(3): 705-719.
DOI URL |
| [2] | KAWARA O, UEHARA M, IBARAGI K, 1999 A study on the water quality of runoff from forest[J]. Water Science and Technology, 39(12): 93-98. |
| [3] |
LANG M, LI P, YAN X Y, 2013. Runoff concentration and load of nitrogen and phosphorus from a residential area in an intensive agricultural watershed[J]. Science of the Total Environment, 458-460: 238-245.
DOI URL |
| [4] |
LI J K, MA M H, LI Y J, et al., 2019. Influence analysis of different design conditions on urban runoff and non‐point source pollution[J]. Water Environment Research, 91(11): 1546-1557.
DOI URL |
| [5] |
LI Q, OUYANG W, ZHU J, et al., 2023. Discharge dynamics of agricultural diffuse pollution under different rainfall patterns in the middle Yangtze river[J]. Journal of Environmental Management, 347: 119116.
DOI URL |
| [6] |
LI X N, ZHANG W W, WU J Y, et al., 2021. Loss of nitrogen and phosphorus from farmland runoff and the interception effect of an ecological drainage ditch in the North China Plain: A field study in a modern agricultural park. Ecological Engineering [J]. Ecological Engineering, 169: 106310.
DOI URL |
| [7] | PAN Y J, LI Z Q, GAO Y Y, et al., 2021. Analysis of the Migration characteristics of stormwater runoff pollutants on different underlying surfaces in Guangzhou, China[J]. Frontiers in Earth Science, 9: 1-12. |
| [8] |
SOLTANINIA S, ESKANDARIPOUR M, GOLMOHAMMADI M H, et al., 2025. Nitrate pollution in urban runoff: A comprehensive risk assessment for human and ecological health[J]. Science of the Total Environment, 974: 179184.
DOI URL |
| [9] |
WEI H B, WANG Y, LIU J, et al., 2023. Spatiotemporal variations of water eutrophication and non-point source pollution prevention and control in the main stream of the Yellow River in Henan Province from 2012 to 2021[J]. Sustainability, 15(20): 1-18.
DOI URL |
| [10] |
XU Z X, XIONG L J, LI H Z, et al., 2017. Influences of rainfall variables and antecedent discharge on urban effluent concentrations and loads in wet weather[J]. Water Science and Technology, 75(7-8): 1584-1598.
DOI PMID |
| [11] |
XU Z X, XIONG L J, LI H Z, et al., 2019. Runoff simulation of two typical urban green land types with the Stormwater Management Model (SWMM): Sensitivity analysis and calibration of runoff parameters[J]. Environmental Monitoring and Assessment, 191(6): 343.
DOI PMID |
| [12] |
YANG J, LIANG J P, YANG G H, et al., 2020. Characteristics of non-point source pollution under different land use types[J]. Sustainability, 12(5): 1-13.
DOI URL |
| [13] | ZENG J J, HUANG G R, LUO H W, et al., 2019. First flush of non-point source pollution and hydrological effects of LID in a Guangzhou community[J]. Scientific Reports, 9(1): 138651. |
| [14] |
ZHANG Q Q, MIAO L P, WANG X K, et al., 2015. The capacity of greening roof to reduce stormwater runoff and pollution[J]. Landscape and Urban Planning, 144: 142-150.
DOI URL |
| [15] | 车旭恒, 朱君君, 张立维, 等, 2025. 武汉市极端降雨与气候因子的响应研究[J]. 中南民族大学学报(自然科学版), 44(3): 319-326. |
| CHE X H, ZHU J J, ZHANG L W, et al., 2025. A study on the response of extreme rainfall in Wuhan to climatic factors[J]. Journal of South-Central Minzu University (Natural Science Edition), 44(3): 319-326. | |
| [16] | 程明琨, 闵炬, 张艳颖, 等, 2025. 降雨强度及有机无机肥配施对太湖地区典型菜地氮磷动态流失过程的影响[J]. 中国生态农业学报(中英文), 33(2): 265-277. |
| CHENG M K, MIN J, ZHANG Y Y, et al., 2025. Effects of rainfall intensity and combined application of organic and inorganic fertilizer on the dynamic process of nitrogen and phosphorus loss in typical vegetable plots in the Taihu Lake region[J]. Chinese Journal of Eco-Agriculture, 33(2): 265-277. | |
| [17] | 邓华, 高明, 龙翼, 等, 2021. 石盘丘小流域不同土地利用方式下土壤氮磷流失形态及通量[J]. 环境科学, 42(1): 251-262. |
| DENG H, GAO M, LONG Y, et al., 2021. Characteristics of soil nitrogen and phosphorus losses under different land use schemes in the Shipanqiu Watershed[J]. Environmental Science, 42(1): 251-262. | |
| [18] | 端木家耀, 2024. 滨海土壤地区农田面源污染排放系数时间变化特征及影响因素研究[D]. 上海: 华东理工大学: 72-73. |
| DUANMU J Y, 2024. Study on the temporal variation characteristics and influencing factors of the discharge coefficients of farmland non-point source pollution in the coastal soil areas[D]. Shanghai: East China University of Science and Technology: 72-73. | |
| [19] | 房振南, 金科, 王雪姣, 等, 2021. 长三角一体化生态绿色发展示范区主要河湖水质变化趋势分析[J]. 水利水电快报, 42(4): 68-74. |
| FANG Z N, JIN K, WANG X J, et al., 2021. Analysis on water quality variation trend of main rivers and lakes in integrated demonstration area on ecologically friendly development in Yangtze River Delta[J]. Express Water Resources & Hydropower Information, 42(4): 68-74. | |
| [20] | 高艺伦, 2022. 村镇土壤氮磷分布特征及对水环境的影响研究[D]. 重庆: 重庆大学: 81-83. |
| GAO Y L, 2022. Distribution characteristics of soil nitrogen and phosphorus in villages and towns and the impacts on the water environment[D]. Chongqing: Chongqing University: 81-83. | |
| [21] | 高雅弘, 林炳权, 赵晨, 等, 2024. 长江流域丘陵城镇初期雨水污染特征与截流调蓄研究[J]. 环境工程, 42(9): 191-200. |
| GAO Y H, LIN B Q, ZHAO C, et al., 2024. The Characteristics of initial rainwater pollution and interception and storage in hilly towns in the Yangtze River basin[J]. Environmental Engineering, 42(9): 191-200. | |
| [22] |
郭心仪, 张守红, 王国庆, 2024. 城市不同下垫面降雨径流水质监测及特征研究[J]. 中国农村水利水电 (3): 128-136.
DOI |
| GUO X Y, ZHANG S H, WANG G Q, 2024. Monitoring experiment and characteristics analysis of rainfall-runoff-water quality of different urban underlying surfaces[J]. China Rural Water and Hydropower (3): 128-136. | |
| [23] |
龚莉, 张翔, 罗蔚, 等. 2025. 基于多源降雨数据的中游城市群极端降雨特征和风险分析[J]. 长江科学院院报, 42(2): 83-90.
DOI |
| GONG L, ZHANG X, LUO W, et al., 2025. Characterization and risk analysis of extreme precipitation in yangtze river midstream urban agglomerations based on multi-source rainfall data[J]. Journal of Changjiang River Scientific Research Institute, 42(2): 83-90. | |
| [24] |
李琪, 张娜, 罗英杰, 等, 2019. 基于MFF30方法的城市降雨径流初期冲刷效应[J]. 中国科学院大学学报, 36(5): 650-662.
DOI |
|
LI Q, ZHANG N, LUO Y J, et al., 2019. The first flush effect of urban rainfall runoff based on MFF30 method[J]. Journal of University of Chinese Academy of Sciences, 36(5): 650-662.
DOI |
|
| [25] | 李阳, 2019. 上海郊野公园典型林分水源涵养功能综合评价[D]. 南京: 南京林业大学: 62-64. |
| LI Y, 2019. Comprehensive evaluation of water conservation function of typical forest types in country parks in Shanghai[D]. Nanjing: Nanjing Forestry University: 62-64. | |
| [26] | 刘子恒, 2023. 西北某市雨水径流水质特征以及初期雨水界定和控制策略研究[D]. 兰州: 兰州交通大学: 77-78. |
| LIU Z H, 2023. Study on water quality characteristics of stormwater runoff and initial stormwater definition and control strategy of a city in Northwest China[D]. Lanzhou: Lanzhou Jiaotong University: 77-78. | |
| [27] | 刘方严, 黎建强, 杨舒媛, 等, 2025. 林下三七种植对林地土壤抗冲抗蚀性影响[J]. 水土保持研究, 32(5): 1-9. |
| LIU F Y, LI J Q, YANG S Y, et al., 2025. Effects of understory Panax notoginseng planting on soil anti-scourability and anti-erodibility in forestlands[J]. Research of Soil and Water Conservation, 32(5): 1-9. | |
| [28] | 庞维华, 2022. 不同类型园林植物群落雨水截留能力研究[D]. 陕西: 西北农林大学: 49-51. |
| PANG W H, 2022. Research on rainwater intercepting ability of different types of garden plant communities[D]. Shaanxi: College of Landscape Architecture and Art Northwest A & F University: 49-51. | |
| [29] | 上海市生态环境局, 2025. 黄浦江上游饮用水水源保护区划 (2025版) [EB/OL]. [2025-09-28]. https://sthj.sh.gov.cn/hbzhywpt1272/hbzhywpt5406/20250928/fa8404f11b3c40d1bf707cfbac9f793b.html. |
| Shanghai Municipal Bureau of Ecology and Environment, 2025. Protection zones for drinking water sources in the upper reaches of Huangpu River (2025) [EB/OL]. [2025-09-28]. https://sthj.sh.gov.cn/hbzhywpt1272/hbzhywpt5406/20250928/fa8404f11b3c40d1bf707cfbac9f793b.html. | |
| [30] | 佘步存, 杜园园, 2025. 长三角城市群雨水径流水质污染特征与控制技术分析[J]. 净水技术, 44(4): 37-48. |
| SHE B C, DU Y Y, 2025. Analysis of rainwater runoff pollution feature and pollution control technologies of Yangtze River Delta Urban Agglomerations[J]. Water Purification Technology, 44(4): 37-48. | |
| [31] | 史秀芳, 王丽晶, 潘兴瑶, 等, 2024. 老城区降雨径流污染特征分析——以北京东城区某排水分区为例[J]. 西北大学学报(自然科学版), 54(3): 355-365. |
| SHI X F, WANG L J, PAN X Y, et al., 2024. The characteristics of rainfall runoff pollution in the old urban area: A case study of a drainage district in Dongcheng district, Beijing[J]. Journal of Northwest University (Natural Science Edition), 54(3): 355-365. | |
| [32] | 孙婷婷, 2023. 基于氮氧同位素的大莲湖湿地与太浦河水体硝酸盐来源解析[D]. 上海师范大学: 50-51. |
| SUN T T, 2023. Source identification of nitrate in Dalianhu Wetland and Taipu River based on nitrogen and oxygen isotopes[D]. Shanghai: Shanghai Normal University: 50-51. | |
| [33] | 宋珂, 2024. 湖北省三种典型种植模式农田地表径流氮磷流失规律研究[D]. 武汉: 华中农业大学: 57-60. |
| SONG K, 2024. Study on the pattern of nitrogen and phosphorus loss from farmland surface runoff of three typical cropping patterns in Hubei Province[D]. Wuhan: Huazhong Agricultural University: 57-60. | |
| [34] | 王洪山, 王自仲, 唐仁军, 2024. 不同降雨条件下生草栽培对油茶林地产流产沙的影响与预估[J]. 林业科技通讯 (12): 36-39. |
| WANG H S, WANG Z Z, TANG R J, 2024. Effects and predictions of grass cultivation under different rainfall conditions on sediment runoff in camellia oleifera woodland[J]. Forest Science and Technology (12): 36-39. | |
| [35] | 王洁, 叶春, 苗可欣, 等, 2025. 城镇和非城镇降雨径流污染初始冲刷效应分析[J]. 环境科学研究, 38(8): 1837-1846. |
| WANG J, YE C, MIAO K X, et al., 2025. Analysis of the first flush effect in rainfall runoff pollution from urban and non-urban areas[J]. Research of Environmental Sciences, 38(8): 1837-1846. | |
| [36] | 王淼, 李亚峰, 雷坤, 等, 2018. 不同氮污染特征河流N2O浓度、释放通量与排放系数[J]. 环境科学, 39(12): 5400-5409. |
| WANG M, LI Y F, LEI K, et al., 2018. Concentration, flux, and emission factor of N2O in rivers with different nitrogen pollution features[J]. Environmental Science, 39(12): 5400-5409. | |
| [37] | 吴雪, 王燕彩, 张英, 等, 2025. 城市面源污染特征研究趋势与控制措施[J/OL]. 中国给水排水, 1-13 [2025-09-25]. https://link.cnki.net/urlid/12.1073.TU.20250506.1726.002. |
| WU X, WANG Y C, ZHANG Y, et al., 2025. Research trend and control measures on the characteristics of urban non-point source pollution[J/OL]. China Water & Wastewater, 1-13 [2025-09-25]. https://link.cnki.net/urlid/12.1073.TU.20250506.1726.002. | |
| [38] | 向速林, 2013. 赣江流域农田地表径流氮磷迁移与流失研究[J]. 生态环境学报, 22(7): 1204-1207. |
| XIANG S L, 2013. Nitrogen and phosphorus migration and loss of surface runoff in Ganjiang River watershed[J]. Ecology and Environmental Sciences, 22(7): 1204-1207. | |
| [39] | 熊丽君, 吴建强, 黄沈发. 2022. 不同降雨特征下缓冲带水分及TN分配规律[J]. 中国环境科学, 42(4): 1837-1846. |
| XIONG L J, WU J Q, HUANG S F, 2022. Distribution of water and tn loads in buffer strips under different rainfall characteristics[J]. China Environmental Science, 42(4): 1837-1846. | |
| [40] | 颜润润, 晁建颖, 2022. 元荡湖水环境治理及湖心断面达标对策研究[J]. 中国资源综合利用, 40(5): 202-204. |
| YAN R R, CHAO J Y, 2022. Study on the countermeasures for water environment treatment and mid-lake section standard compliance of Yuandang Lake[J]. China Resources Comprehensive Utilization, 40(5): 202-204. | |
| [41] |
杨秋平, 陆丽华, 惠武彬, 等, 2025. 太湖流域典型农区施肥强度组成特征及影响因素——以苏州太湖生态岛为例[J]. 浙江农业科学, 66(5): 1277-1281.
DOI |
| YANG Q P, LU L H, HUI W B, et al., 2025. Composition characteristics of fertilization intensity and influencing factors in typical agricultural region in the Taihu Lake Basin: Taking Suzhou Taihu eco-island as an example[J]. Journal of Zhejiang Agricultural Sciences, 66(5): 1277-1281. | |
| [42] | 杨芷萱, 黎云祥, 朱广伟, 等, 2025. 2003-2023年太湖蓝藻水华面积变化的影响因子分析[J]. 湖泊科学, 37(3): 1-21. |
|
YANG Z X, LI Y X, ZHU G W, et al., 2025. Control factors of cyanobacterial bloom area in Lake Taihu, China (2003-2023)[J]. Journal of Lake Sciences, 37(3): 1-21.
DOI URL |
|
| [43] | 袁绍春, 谭宇俊, 吴攀, 等, 2025. 山地城市典型下垫面径流污染特征及影响因素研究[J/OL]. 环境工程, 1-16 [2025-09-25]. https://link.cnki.net/urlid/11.2097.X.20250515.1508.007. |
| YUAN S C, TAN Y J, WU P, et al., 2025. Characteristics and influencing factors of runoff pollution from typical underlying surfaces in mountainous cities[J/OL]. Environmental Engineering, 1-16 [2025-09-25]. https://link.cnki.net/urlid/11.2097.X.20250515.1508.007. | |
| [44] | 余磊, 杨婷, 贾文飞, 等, 2024. 上海市国控断面水质评价及时空特征分析[J]. 绿色科技, 26(22): 179-184. |
| YU L, YANG T, JIA W F, et al., 2024. Assessment and spatiotemporal analysis of water quality in national monitoring sections in Shanghai[J]. Journal of Green Science and Technology, 26(22): 179-184. | |
| [45] | 张翰林, 2012. 黄浦江上游地区稻田水中溶解性有机氮碳的环境行为研究[D]. 上海: 上海交通大学: 82-85. |
| ZHANG H L, 2012. Study on the environmental behavior of dissolved organic nitrogen and carbon in paddy water in upper reach of Huangpu River Basin[D]. Shanghai: Shanghai Jiao Tong University: 82-85. | |
| [46] | 张洁, 2018. 上海典型水域总磷、总氮含量比较[J]. 净水技术, 37(S1): 14-17, 24. |
| ZHANG J, 2018. Comparison of total phosphorus and total nitrogen content in typical Shanghai waters[J]. Water Purification Technology, 37(S1): 14-17, 24. | |
| [47] | 张晓菊, 2019. 城中村不同降雨特征下的径流污染变化规律研究[J]. 人民珠江, 40(6): 105-110. |
| ZHANG X J, 2019. Research on runoff water quality variation under different rainfall characteristics in urban village[J]. Pearl River, 40(6): 105-110. | |
| [48] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2012. 降水量等级: GB/T 28592—2012[S]. 北京: 中国标准出版社: 1-2. |
| General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China,Standardization Administration of China, 2012. Precipitation Grade: GB/T 28592—2012[S]. Beijing: Standards Press of China: 1-2. | |
| [49] | 朱广伟, 国超旋, 康丽娟, 等, 2025. 太湖水质达Ⅲ类背景下藻情与水质变化特征[J]. 湖泊科学, 37(3): 705-715. |
|
ZHU G W, GUO C X, KANG L J, et al., 2025. Dynamics of cyanobacterial bloom and water quality in Lake Taihu under National Class Ⅲ water quality achieved in 2024[J]. Journal of Lake Sciences, 37(3): 705-715.
DOI URL |
| [1] | 周依湘, 唐斌, 付成忠, 许榕钦, 周东静, 王俊丽, 郑晶. 北江中下游水源地双酚类化合物和溴代阻燃剂的污染特征及风险评估[J]. 生态环境学报, 2025, 34(7): 1007-1019. |
| [2] | 郝丽宇, 何苗苗, 汤家喜. 河流水体全氟化合物的污染现状及修复技术研究进展[J]. 生态环境学报, 2023, 32(12): 2115-2127. |
| [3] | 王海鹤, 孙媛媛, 张帅, 徐小蓉, 商成梅, 黎春想. 贵阳市集中式饮用水源地重金属污染特征及健康风险评价[J]. 生态环境学报, 2022, 31(10): 2039-2047. |
| [4] | 张凯, 郭紫微, 王倩, 韩雅, 李贶家, 张中帅. 华中地区水库型水源地抗生素抗性细菌的赋存特征研究[J]. 生态环境学报, 2021, 30(5): 1017-1022. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
