生态环境学报 ›› 2021, Vol. 30 ›› Issue (10): 1976-1989.DOI: 10.16258/j.cnki.1674-5906.2021.10.005
杨洪炳1,2(), 肖以华2,*(
), 李明2, 许涵2, 史欣2, 郭晓敏1
收稿日期:
2021-08-04
出版日期:
2021-10-18
发布日期:
2021-12-21
通讯作者:
* 肖以华(1976年生),男,副研究员,主要从事城市化对森林土壤质量与碳中和潜力研究。E-mail: jxxiaoyihua@126.com作者简介:
杨洪炳(1995年生),男,硕士研究生,研究方向为植被恢复与生态工程。E-mail: yhb1314@vip.qq.com
基金资助:
YANG Hongbing1,2(), XIAO Yihua2,*(
), LI Ming2, XU Han2, SHI Xin2, GUO Xiaomin1
Received:
2021-08-04
Online:
2021-10-18
Published:
2021-12-21
摘要:
为了探究典型城市森林土壤团聚体稳定性旱季变化特征及影响因子,以广州市不同演替阶段的针叶林(Pine forest,PF)、针阔混交林(Mixed pine and broadleaf forest,MF)、常绿阔叶林(Broad-leaved evergreen forests,BF)为研究对象,分析表层土(0—10 cm)和剖面土(10—30 cm)团聚体稳定性、理化性质和微生物生物量及胞外酶活性等相关因子特征,以及土壤团聚体稳定性驱动因素与影响因素的耦合关系。结果表明,(1)土壤团聚体机械稳定性的平均重量直径(DMW)随土壤深度增加呈减小趋势,相反,几何平均直径(DGM)和重量分形维数(Dm)随土壤深度增加呈增大趋势。土壤团聚体水稳性的DMW和DGM呈MF>BF>PF,而Dm变化与之相反。(2)土壤微生物酶活性易受磷限制,其受限制程度呈MF>BF>PF,与土壤团聚体水稳性在森林类型中变化规律一致。(3)土壤理化性质、微生物生物量、酶活性等因子对土壤团聚体机械稳定性整体空间差异解释程度为13.3%,而对土壤团聚体水稳性整体空间差异解释程度为40.0%。(4)土壤微生物熵和微生物胞外酶活性是土壤团聚体稳定性的主要驱动因子,水稳性主要受微生物生物量碳和酸性磷酸酶活性影响,而其机械稳定性主要受微生物生物量氮磷影响。(5)演替后期的针阔混交林和常绿阔叶林土壤表现出较高的碳利用效率及较低的氮利用效率,微生物可通过调控微生物生物量和调节碳氮元素利用效率来改善演替后期群落受磷限制状况,进而影响土壤团聚体稳定性。研究结果可为城市森林土壤质量评价和生态环境保护提供理论依据。
中图分类号:
杨洪炳, 肖以华, 李明, 许涵, 史欣, 郭晓敏. 典型城市森林旱季土壤团聚体稳定性与微生物胞外酶活性耦合关系[J]. 生态环境学报, 2021, 30(10): 1976-1989.
YANG Hongbing, XIAO Yihua, LI Ming, XU Han, SHI Xin, GUO Xiaomin. Coupling Relationship between Soil Aggregate Stability and Microbial Extracellular Enzyme Activities in Typical Urban Forests during the Dry Season[J]. Ecology and Environment, 2021, 30(10): 1976-1989.
森林类型 Forest type | 地点 Sites | 平均海拔 Mean altitude/m | 经度 Longitude/ 纬度 Latitude | 优势树种 Advantageous tree species | 平均胸径Average breast size/cm | 平均林龄Average forest age/a |
---|---|---|---|---|---|---|
PF | FRZ | 54 | 113°13′E/23°30′N | 马尾松 Pinus massoniana | 20.6 | 25 |
MF | HLS | 36.3 | 113°22′E/23°11′N | 木荷 Schima superba、黧蒴锥 Castanopsis fissa、山油柑 Acronychia pedunculata、马尾松 Pinus massoniana | 30.2 | 40 |
BF | MFS | 152.3 | 113°26′E/23°17′N | 华润楠 Machilus chinensis、黄杞 Engelhardia roxburghiana、 中华锥 Castanopsis chinensis、山油柑 Acronychia pedunculata、鸭脚木 Schefflera octophylla、木荷 Schima superba | 31.3 | 80 |
表1 广州市不同森林类型样地信息
Table1 Information on sample sites of different forest types in Guangzhou
森林类型 Forest type | 地点 Sites | 平均海拔 Mean altitude/m | 经度 Longitude/ 纬度 Latitude | 优势树种 Advantageous tree species | 平均胸径Average breast size/cm | 平均林龄Average forest age/a |
---|---|---|---|---|---|---|
PF | FRZ | 54 | 113°13′E/23°30′N | 马尾松 Pinus massoniana | 20.6 | 25 |
MF | HLS | 36.3 | 113°22′E/23°11′N | 木荷 Schima superba、黧蒴锥 Castanopsis fissa、山油柑 Acronychia pedunculata、马尾松 Pinus massoniana | 30.2 | 40 |
BF | MFS | 152.3 | 113°26′E/23°17′N | 华润楠 Machilus chinensis、黄杞 Engelhardia roxburghiana、 中华锥 Castanopsis chinensis、山油柑 Acronychia pedunculata、鸭脚木 Schefflera octophylla、木荷 Schima superba | 31.3 | 80 |
因子 Parameters | 土层 Layer/cm | 森林类型 Forest type | ||
---|---|---|---|---|
PF | MF | BF | ||
w(OC)/ (g∙kg-1) | 0-10 | 25.90±8.92bA | 20.11±4.24bA | 43.07±10.71aA |
10-30 | 7.12±1.48cB | 10.66±2.39bB | 19.87±3.60aB | |
w(TN)/ (g∙kg-1) | 0-10 | 1.24±0.48bA | 1.11±0.22bA | 2.09±0.33aA |
10-30 | 0.49±0.11bB | 0.97±0.86abA | 1.11±0.24aB | |
w(TP)/ (g∙kg-1) | 0-10 | 0.13±0.02bA | 0.16±0.03aA | 0.18±0.03aA |
10-30 | 0.08±0.02bB | 0.16±0.03aA | 0.15±0.02aB | |
w(OC)/ w(TN) | 0-10 | 21.21±2.44aA | 18.20±2.22bA | 20.39±2.76abA |
10-30 | 14.69±1.70aB | 14.71±5.63aA | 18.07±1.63aB | |
w(OC)/ w(TP) | 0-10 | 203.45±42.01aA | 125.11±28.04bA | 234.33±47.03aA |
10-30 | 87.64±14.67bB | 67.62±13.04cB | 136.67±25.33aB | |
w(TN)/ w(TP) | 0-10 | 9.72±2.39aA | 6.90±1.48bA | 11.47±1.48aA |
10-30 | 6.00±1.10abB | 6.04±4.98bA | 7.59±1.50aB | |
容重 Soil bulk density/ (g∙cm-3) | 0-10 | 1.57±0.10aA | 1.44±0.09bA | 1.31±0.14cA |
10-30 | 1.62±0.06aA | 1.55±0.09abB | 1.47±0.11bB | |
含水率 Water content/% | 0-10 | 11.93±2.14bA | 10.11±1.78bA | 17.60±3.30aA |
10-30 | 12.32±2.20bA | 10.12±1.23cA | 16.96±2.62aA | |
pH (H2O) | 0-10 | 4.01±0.06bA | 4.23±0.17aA | 4.31±0.11aA |
10-30 | 4.25±0.06bB | 4.44±0.19aB | 4..45±0.14aB |
表2 不同演替阶段城市森林土壤理化性质特征
Table 2 Physical and chemical properties of urban forest soils at different successional stages
因子 Parameters | 土层 Layer/cm | 森林类型 Forest type | ||
---|---|---|---|---|
PF | MF | BF | ||
w(OC)/ (g∙kg-1) | 0-10 | 25.90±8.92bA | 20.11±4.24bA | 43.07±10.71aA |
10-30 | 7.12±1.48cB | 10.66±2.39bB | 19.87±3.60aB | |
w(TN)/ (g∙kg-1) | 0-10 | 1.24±0.48bA | 1.11±0.22bA | 2.09±0.33aA |
10-30 | 0.49±0.11bB | 0.97±0.86abA | 1.11±0.24aB | |
w(TP)/ (g∙kg-1) | 0-10 | 0.13±0.02bA | 0.16±0.03aA | 0.18±0.03aA |
10-30 | 0.08±0.02bB | 0.16±0.03aA | 0.15±0.02aB | |
w(OC)/ w(TN) | 0-10 | 21.21±2.44aA | 18.20±2.22bA | 20.39±2.76abA |
10-30 | 14.69±1.70aB | 14.71±5.63aA | 18.07±1.63aB | |
w(OC)/ w(TP) | 0-10 | 203.45±42.01aA | 125.11±28.04bA | 234.33±47.03aA |
10-30 | 87.64±14.67bB | 67.62±13.04cB | 136.67±25.33aB | |
w(TN)/ w(TP) | 0-10 | 9.72±2.39aA | 6.90±1.48bA | 11.47±1.48aA |
10-30 | 6.00±1.10abB | 6.04±4.98bA | 7.59±1.50aB | |
容重 Soil bulk density/ (g∙cm-3) | 0-10 | 1.57±0.10aA | 1.44±0.09bA | 1.31±0.14cA |
10-30 | 1.62±0.06aA | 1.55±0.09abB | 1.47±0.11bB | |
含水率 Water content/% | 0-10 | 11.93±2.14bA | 10.11±1.78bA | 17.60±3.30aA |
10-30 | 12.32±2.20bA | 10.12±1.23cA | 16.96±2.62aA | |
pH (H2O) | 0-10 | 4.01±0.06bA | 4.23±0.17aA | 4.31±0.11aA |
10-30 | 4.25±0.06bB | 4.44±0.19aB | 4..45±0.14aB |
图1 不同森林类型中土壤团聚体稳定性指标特征 0—10 cm(a、c、e),10—30 cm(b、d、f)。不同小写字母表示相同团聚体稳定性指标中相同稳定特性之间呈差异显著(P<0.05);不同大写字母表示同森林类型不同土层间呈显著性差异(P<0.05),n=9
Fig. 1 Characteristics of soil agglomerate stability indicators in different forest types 0-10 cm (a, c, e), 10-30 cm (b, d, f). Different lowercase letters indicate significant differences (P<0.05) between the same stability characteristics in the same cluster stability index, and different capital letters indicate significant differences (P<0.05) between different soil layers in the same forest type, n=9
图2 不同森林类型和不同土层酶活性差异 同小写字母表示土壤酶活性在所有森林类型与土层组合类别之间呈显著性差异(P<0.05),n=9
Fig. 2 Soil enzyme activities varied among different forest types and different soil layers Different lowercase letters indicate significant differences in soil enzyme activity between all forest types and soil layer combinations (P<0.05), n=9
图3 不同森林类型土壤酶活性化学计量比特征 aBG、aCHI和aAP分别与aCAT的比值仅为数值比。不同小写字母表示不同森林类型土壤酶活性计量比之间或相同森林类型土壤酶活性计量比在土层间呈显著性差异(P<0.05),n=9
Fig. 3 Chemometric ratio characteristics of soil enzyme activity in different forest types The ratios of aBG, aCHI and aAP respectively to aCAT are numerical ratios only. Different lowercase letters indicate significant differences (P<0.05) between soil enzyme activity stoichiometry ratios of different forest types or between soil layers of the same forest type, n=9
酶活性 Enzyme activity | aAP1 | aAP2 | aBG1 | aBG2 | aCHI1 | aCHI2 | aCAT1 |
---|---|---|---|---|---|---|---|
aAP2 | 0.855** | 1 | |||||
aBG1 | 0.579** | 0.463* | 1 | ||||
aBG2 | 0.311 | 0.193 | 0.877** | 1 | |||
aCHI1 | 0.479* | 0.3 | 0.256 | 0.204 | 1 | ||
aCHI2 | -0.138 | -0.268 | -0.163 | -0.124 | 0.079 | 1 | |
aCAT1 | 0.327 | 0.37 | -0.013 | -0.085 | 0.293 | 0.01 | 1 |
aCAT2 | -0.027 | -0.037 | 0.175 | 0.237 | 0.259 | -0.126 | 0.244 |
表3 城市森林不同土层土壤胞外酶活性间Pearson相关性
Table 3 Pearson correlation between extracellular enzyme activities in soils of different soil layers in urban forests
酶活性 Enzyme activity | aAP1 | aAP2 | aBG1 | aBG2 | aCHI1 | aCHI2 | aCAT1 |
---|---|---|---|---|---|---|---|
aAP2 | 0.855** | 1 | |||||
aBG1 | 0.579** | 0.463* | 1 | ||||
aBG2 | 0.311 | 0.193 | 0.877** | 1 | |||
aCHI1 | 0.479* | 0.3 | 0.256 | 0.204 | 1 | ||
aCHI2 | -0.138 | -0.268 | -0.163 | -0.124 | 0.079 | 1 | |
aCAT1 | 0.327 | 0.37 | -0.013 | -0.085 | 0.293 | 0.01 | 1 |
aCAT2 | -0.027 | -0.037 | 0.175 | 0.237 | 0.259 | -0.126 | 0.244 |
因子 Parameters | 森林类型 Forest type | |||||||
---|---|---|---|---|---|---|---|---|
PF | MF | BF | ||||||
0-10 cm | 10-30 cm | 0-10 cm | 10-30 cm | 0-10 cm | 10-30 cm | |||
微生物生物量碳CMB | 24.95±9.36aA | 22.59±6.53aA | 3.22±2.84bA | 3.59±3.91bA | 6.41±5.50bA | 12.05±7.20abA | ||
微生物生物量氮NMB | 3.45±4.70aA | 1.08±0.61aA | 2.27±1.25aA | 1.77±0.83abA | 2.76±1.71aA | 3.17±1.68bA | ||
微生物生物量磷PMB | 3.38±1.94aA | 1.13±0.97aB | 6.03±1.88aA | 2.81±1.95aB | 4.11±1.68aA | 1.18±0.99aB | ||
微生物量碳氮比CMB/NMB | 16.52±14.13aA | 85.10±195.83aB | 2.22±2.58bA | 1.43±0.90bA | 2.36±1.46bA | 3.78±1.06abB | ||
微生物量碳磷比CMB/PMB | 13.71±20.17aA | 75.27±106.88aB | 0.57±0.54bA | 3.04±4.39bA | 2.27±3.41abA | 40.54±81.11aB | ||
微生物量氮磷比NMB/PMB | 3.12±7.74aA | 2.93±5.23aA | 0.44±0.33aA | 1.14±1.63aA | 0.94±1.10aA | 9.52±16.32aB | ||
微生物熵碳qMBC | 1.06±0.54aA | 15.39±1.44aB | 0.15±0.10bA | 11.63±0.56bA | 0.16±0.13bA | 8.59±0.30abB | ||
微生物熵氮qMBN | 0.54±3.27aA | 1.44±1.42aA | 0.10±1.27aA | 0.56±2.25aA | 0.13±0.78aA | 0.30±1.33aB | ||
微生物熵磷qMBP | 3.27±15.39aA | 1.42±12.72aA | 1.27±11.63aA | 2.25±11.51aB | 0.78±8.59aA | 1.33±6.40aB | ||
Cimc/Nimc | 2.34±2.19aA | 0.68±0.27aB | 26.95±34.29bA | 38.09±80.04bA | 30.79±58.94bA | 5.26±2.02abB | ||
Cimc/Pimc | 32.14±23.36aA | 4.26±3.85aB | 430.18±351.23aA | 256.67± 411.62bA | 700.56±1441.87aA | 17.09±16.31abB | ||
Nimc/Pimc | 21.84±15.19aA | 8.02±6.54aB | 29.04±27.30aA | 16.27±16.28aA | 23.95±17.7aA | 3.54±3.82aB |
表4 不同森林类型土壤-微生物生物量碳氮磷及化学元素计量比特征
Table 4 Characteristics of soil-microbial biomass carbon, nitrogen, phosphorus and chemical elemental stoichiometry ratios in different forest types
因子 Parameters | 森林类型 Forest type | |||||||
---|---|---|---|---|---|---|---|---|
PF | MF | BF | ||||||
0-10 cm | 10-30 cm | 0-10 cm | 10-30 cm | 0-10 cm | 10-30 cm | |||
微生物生物量碳CMB | 24.95±9.36aA | 22.59±6.53aA | 3.22±2.84bA | 3.59±3.91bA | 6.41±5.50bA | 12.05±7.20abA | ||
微生物生物量氮NMB | 3.45±4.70aA | 1.08±0.61aA | 2.27±1.25aA | 1.77±0.83abA | 2.76±1.71aA | 3.17±1.68bA | ||
微生物生物量磷PMB | 3.38±1.94aA | 1.13±0.97aB | 6.03±1.88aA | 2.81±1.95aB | 4.11±1.68aA | 1.18±0.99aB | ||
微生物量碳氮比CMB/NMB | 16.52±14.13aA | 85.10±195.83aB | 2.22±2.58bA | 1.43±0.90bA | 2.36±1.46bA | 3.78±1.06abB | ||
微生物量碳磷比CMB/PMB | 13.71±20.17aA | 75.27±106.88aB | 0.57±0.54bA | 3.04±4.39bA | 2.27±3.41abA | 40.54±81.11aB | ||
微生物量氮磷比NMB/PMB | 3.12±7.74aA | 2.93±5.23aA | 0.44±0.33aA | 1.14±1.63aA | 0.94±1.10aA | 9.52±16.32aB | ||
微生物熵碳qMBC | 1.06±0.54aA | 15.39±1.44aB | 0.15±0.10bA | 11.63±0.56bA | 0.16±0.13bA | 8.59±0.30abB | ||
微生物熵氮qMBN | 0.54±3.27aA | 1.44±1.42aA | 0.10±1.27aA | 0.56±2.25aA | 0.13±0.78aA | 0.30±1.33aB | ||
微生物熵磷qMBP | 3.27±15.39aA | 1.42±12.72aA | 1.27±11.63aA | 2.25±11.51aB | 0.78±8.59aA | 1.33±6.40aB | ||
Cimc/Nimc | 2.34±2.19aA | 0.68±0.27aB | 26.95±34.29bA | 38.09±80.04bA | 30.79±58.94bA | 5.26±2.02abB | ||
Cimc/Pimc | 32.14±23.36aA | 4.26±3.85aB | 430.18±351.23aA | 256.67± 411.62bA | 700.56±1441.87aA | 17.09±16.31abB | ||
Nimc/Pimc | 21.84±15.19aA | 8.02±6.54aB | 29.04±27.30aA | 16.27±16.28aA | 23.95±17.7aA | 3.54±3.82aB |
元素阈值 Element threshold | 森林类型 Forest type | |||||||
---|---|---|---|---|---|---|---|---|
PF | MF | BF | ||||||
0-10 cm | 10-30 cm | 0-10 cm | 10-30 cm | 0-10 cm | 10-30 cm | |||
TC꞉N | 35.72±28.33bA | 24.20±8.25bA | 234.59±153.04aA | 0.01±0.00bB | 36.79±23.02bA | 148.61±51.16aB | ||
TC꞉P | 6.43±2.37aA | 41.24±23.72aB | 0.02±0.03bcA | 0.15±0.19bB | 1.75±0.73acA | 9.77±7.61aB | ||
TN꞉P | 1.45±1.12aA | 0.03±0.05bB | 0.18±0.12bA | 0.20±0.29abA | 2.44±1.17aA | 4.57±4.12aA |
表5 不同森林类型中不同土层元素阈值比特征
Table 5 Characteristics of elemental threshold ratios in different soil layers
元素阈值 Element threshold | 森林类型 Forest type | |||||||
---|---|---|---|---|---|---|---|---|
PF | MF | BF | ||||||
0-10 cm | 10-30 cm | 0-10 cm | 10-30 cm | 0-10 cm | 10-30 cm | |||
TC꞉N | 35.72±28.33bA | 24.20±8.25bA | 234.59±153.04aA | 0.01±0.00bB | 36.79±23.02bA | 148.61±51.16aB | ||
TC꞉P | 6.43±2.37aA | 41.24±23.72aB | 0.02±0.03bcA | 0.15±0.19bB | 1.75±0.73acA | 9.77±7.61aB | ||
TN꞉P | 1.45±1.12aA | 0.03±0.05bB | 0.18±0.12bA | 0.20±0.29abA | 2.44±1.17aA | 4.57±4.12aA |
土层 Layer/cm | 指标Indexes | SOC | TN | TP | CMB | NMB | PMB | aBG | aCHI | aAP | aCAT | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0-10 | DMW | -0.17 | -0.18 | -0.29 | 0.07 | -0.15 | -0.10 | 0.07 | -0.23 | 0.26 | 0.03 | |
DGM | -0.10 | -0.14 | -0.30 | 0.09 | -0.19 | -0.12 | 0.08 | -0.22 | 0.31 | 0.08 | ||
Dm | 0.04 | 0.13 | 0.30 | -0.04 | 0.24 | 0.05 | -0.06 | 0.14 | -0.28 | -0.21 | ||
10-30 | DMW | 0.30 | -0.12 | 0.03 | -0.16 | -0.09 | -0.47* | 0.04 | -0.15 | 0.37 | 0.00 | |
DGM | 0.23 | -0.14 | 0.08 | -0.25 | -0.16 | -0.45* | -0.06 | -0.19 | 0.35 | -0.06 | ||
Dm | 0.15 | 0.25 | -0.08 | 0.32 | 0.33 | 0.30 | 0.37 | 0.21 | -0.18 | 0.09 | ||
土层 Layer/cm | 指标 Indexes | SOC | TN | TP | CMB | NMB | PMB | aBG | aCHI | aAP | aCAT | |
0-10 | DMW | -0.23 | -0.18 | 0.01 | -0.34 | -0.16 | 0.23 | -0.24 | -0.14 | 0.07 | -0.19 | |
DGM | -0.13 | -0.08 | 0.09 | -0.39* | -0.16 | 0.17 | -0.28 | -0.08 | 0.08 | -0.17 | ||
Dm | -0.03 | -0.05 | -0.17 | 0.38 | 0.12 | -0.07 | 0.28 | -0.05 | -0.07 | 0.04 | ||
10-30 | DMW | -0.07 | 0.06 | 0.48* | -0.58** | -0.27 | 0.22 | -0.37 | 0.12 | -0.12 | -0.26 | |
DGM | 0.10 | 0.15 | 0.57** | -0.66** | -0.19 | 0.23 | -0.41 | 0.12 | -0.15 | -0.32 | ||
Dm | -0.27 | -0.22 | -0.55** | 0.64** | 0.11 | -0.18 | 0.33 | -0.05 | 0.12 | 0.32 |
表6 不同土层土壤资源和微生物相关指标与土壤团聚体稳定性指标相关性分析
Table 6 Correlation analysis of soil resources and microbial related indicators with soil agglomerate stability indicators in different soil layers
土层 Layer/cm | 指标Indexes | SOC | TN | TP | CMB | NMB | PMB | aBG | aCHI | aAP | aCAT | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0-10 | DMW | -0.17 | -0.18 | -0.29 | 0.07 | -0.15 | -0.10 | 0.07 | -0.23 | 0.26 | 0.03 | |
DGM | -0.10 | -0.14 | -0.30 | 0.09 | -0.19 | -0.12 | 0.08 | -0.22 | 0.31 | 0.08 | ||
Dm | 0.04 | 0.13 | 0.30 | -0.04 | 0.24 | 0.05 | -0.06 | 0.14 | -0.28 | -0.21 | ||
10-30 | DMW | 0.30 | -0.12 | 0.03 | -0.16 | -0.09 | -0.47* | 0.04 | -0.15 | 0.37 | 0.00 | |
DGM | 0.23 | -0.14 | 0.08 | -0.25 | -0.16 | -0.45* | -0.06 | -0.19 | 0.35 | -0.06 | ||
Dm | 0.15 | 0.25 | -0.08 | 0.32 | 0.33 | 0.30 | 0.37 | 0.21 | -0.18 | 0.09 | ||
土层 Layer/cm | 指标 Indexes | SOC | TN | TP | CMB | NMB | PMB | aBG | aCHI | aAP | aCAT | |
0-10 | DMW | -0.23 | -0.18 | 0.01 | -0.34 | -0.16 | 0.23 | -0.24 | -0.14 | 0.07 | -0.19 | |
DGM | -0.13 | -0.08 | 0.09 | -0.39* | -0.16 | 0.17 | -0.28 | -0.08 | 0.08 | -0.17 | ||
Dm | -0.03 | -0.05 | -0.17 | 0.38 | 0.12 | -0.07 | 0.28 | -0.05 | -0.07 | 0.04 | ||
10-30 | DMW | -0.07 | 0.06 | 0.48* | -0.58** | -0.27 | 0.22 | -0.37 | 0.12 | -0.12 | -0.26 | |
DGM | 0.10 | 0.15 | 0.57** | -0.66** | -0.19 | 0.23 | -0.41 | 0.12 | -0.15 | -0.32 | ||
Dm | -0.27 | -0.22 | -0.55** | 0.64** | 0.11 | -0.18 | 0.33 | -0.05 | 0.12 | 0.32 |
图4 土壤团聚体稳定性驱动因素偏最小二乘法路径模型 圈内数值表示r2,内模型箭头间数值为路径系数,外模型箭头间数值为外模型权重/载荷,内模型是潜变量(蓝色)与潜变量关系,外模型是显变量(黄色)与潜变量的关系
Fig. 4 A partial least squares path model for the drivers of soil agglomerate stability The value inside the circle indicates r2, the value between the arrows of the inner model is the path coefficient, the value between the arrows of the outer model is the outer model weight/load, the inner model is the latent variable(blue) to latent variable relationship, and the outer model is the relationship between the explicit(yellow) and latent variables
土层 Layer/cm | 特征 Characteristics | 回归模型 Regression models | 调整R2 Adjustment R2 |
---|---|---|---|
0-10 | 机械稳定性 Mechanical stability | DMW=4.513-0.019 qMBP-0.123 NMB-0.184 PMB-0.115 qMBC | 0.734 |
DGM=1.616-0.008 qMBP-0.033 NMB-0.030 qMBN-0.022 PMB | 0.696 | ||
Dm=2.269+0.005 qMBP+0.013 NMB | 0.235 | ||
水稳性 Water Stability | DMW= -0.010+0.766 TC/N-0.121 qMBC | 0.651 | |
DGM=0.180+0.696 TC/P-0.038 qMBC | 0.618 | ||
Dm=1.169+0.579 TN/P+0.028 qMBC | 0.608 | ||
10-30 | 机械稳定性 Mechanical stability | DMW=3.704-0.028 qMBP-0.244 NMB+0.003 TC/N | 0.682 |
DGM=1.510-0.010 qMBP-0.050 NMB | 0.656 | ||
Dm=2.200+0.005 qMBP+0.045 NMB | 0.526 | ||
水稳性 Water Stability | DMW=7.086-0.027 CMB-1.296 pH | 0.513 | |
DGM=2.086-0.010 CMB-0.313 pH+0.035 aAP | 0.604 | ||
Dm=2.778+0.006 CMB-0.032 aAP | 0.493 |
表7 土壤团聚体稳定性表征指标影响因子逐步回归模型
Table 7 Stepwise regression model of influence factors of soil agglomerate stability characterization index
土层 Layer/cm | 特征 Characteristics | 回归模型 Regression models | 调整R2 Adjustment R2 |
---|---|---|---|
0-10 | 机械稳定性 Mechanical stability | DMW=4.513-0.019 qMBP-0.123 NMB-0.184 PMB-0.115 qMBC | 0.734 |
DGM=1.616-0.008 qMBP-0.033 NMB-0.030 qMBN-0.022 PMB | 0.696 | ||
Dm=2.269+0.005 qMBP+0.013 NMB | 0.235 | ||
水稳性 Water Stability | DMW= -0.010+0.766 TC/N-0.121 qMBC | 0.651 | |
DGM=0.180+0.696 TC/P-0.038 qMBC | 0.618 | ||
Dm=1.169+0.579 TN/P+0.028 qMBC | 0.608 | ||
10-30 | 机械稳定性 Mechanical stability | DMW=3.704-0.028 qMBP-0.244 NMB+0.003 TC/N | 0.682 |
DGM=1.510-0.010 qMBP-0.050 NMB | 0.656 | ||
Dm=2.200+0.005 qMBP+0.045 NMB | 0.526 | ||
水稳性 Water Stability | DMW=7.086-0.027 CMB-1.296 pH | 0.513 | |
DGM=2.086-0.010 CMB-0.313 pH+0.035 aAP | 0.604 | ||
Dm=2.778+0.006 CMB-0.032 aAP | 0.493 |
[1] |
AGUMAS B, BLAGODATSKY S, BALUME I, et al., 2021. Microbial carbon use efficiency during plant residue decomposition: Integrating multi-enzyme stoichiometry and C balance approach[J]. Applied Soil Ecology, DOI: 10.1016/j.apsoil.2020.103820.
DOI |
[2] |
BUGGLE B, GLASER B, ZÖLLER L, et al., 2008. Geochemical Characterization and Origin of Southeastern and Eastern European Loesses (Serbia, Romania, Ukraine)[J]. Quaternary Science Reviews, 27(9-10):1058-1075.
DOI URL |
[3] |
BURNS R G, DEFOREST J L, MARXSEN J et al., 2013. Soil enzymes in a changing environment: Current knowledge and future directions[J]. Soil Biology and Biochemistry, 58:216-234.
DOI URL |
[4] | HANSEN K, THIMONIER A, CLARKE N, et al., 2013. Chapter 18-Atmospheric Deposition to Forest Ecosystems[J]. Developments in Environmental Science, 12:337-374. |
[5] | JIAN Z J, NI Y Y, ZENG L X, ET AL., 2021. Latitudinal patterns of soil extracellular enzyme activities and their controlling factors in Pinus massoniana plantations in subtropical China[J]. Forest Ecology and Management, 495. |
[6] |
JING H, MENG M, WANG G L, et al., 2021. Aggregate binding agents improve soil aggregate stability in Robinia pseudoacacia forests along a climatic gradient on the Loess Plateau, China[J]. Journal of Arid Land, 13(2):165-174.
DOI URL |
[7] |
LI L J, YE R, ZHU BARKER X, et al., 2019. Soil microbial biomass size and nitrogen availability regulate the incorporation of residue carbon into dissolved organic pool and microbial biomass[J]. Soil Science Society of America Journal, 83(4):1083-1092.
DOI URL |
[8] |
LIN Y, YE G, KUZYAKOV Y, et al., 2019. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa[J]. Soil Biology & Biochemistry, 134:187-196.
DOI URL |
[9] |
LI L, YUAN Z R, LI F C, 2019. Changes in soil aggregates composition stabilization and organic carbon during deterioration of alpine grassland[J]. IOP Conference Series: Earth and Environmental Science, DOI: 10.1088/1755-1315/237/3/032068.
DOI |
[10] |
SINSABAUGH R L, MANZONI S, MOORHEAD D L ET AL., 2013. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling[J]. Ecology Letters, 16(7):930-939.
DOI URL |
[11] |
SU X, SU X, YANG S, et al., 2020. Drought changed soil organic carbon composition and bacterial carbon metabolizing patterns in a subtropical evergreen forest[J]. Science of The Total Environment, DOI: 10.1016/j.scitotenv.2020.139568.
DOI |
[12] |
SALA O E, CHAPIN F, ARMESTO J J, et al., 2000. Global biodiversity scenarios for the year 2100[J]. Science, 287(5459):1770-1774.
DOI URL |
[13] |
SINSABAUGH R L, HILL B H, FOLLSTAD SHAH J J, 2009. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J]. Nature, 462(7274):795-798.
DOI URL |
[14] | SINSABAUGH R L, HILL B H, FOLLSTAD SHAH J J, 2010. Erratum: Ecoenzymatic Stoichiometry of Microbial Organic Nutrient Acquisition in Soil and Sediment[J]. Nature, 468(7320):122. |
[15] |
SÁEZ-PLAZA P, MICHAŁOWSKI T, NAVAS M J, et al., 2013. An Overview of the Kjeldahl Method of Nitrogen Determination. Part I. Early History, Chemistry of the Procedure, and Titrimetric Finish[J]. Critical Reviews in Analytical Chemistry, 43(4):178-223.
DOI URL |
[16] |
WANG C, QU L R, YANG L M, et al., 2021. Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon[J]. Global Change Biology, 27(10):2039-2048.
DOI URL |
[17] | XIAO Y H, TONG F, LIU S, et al., 2016. Response of soil labile organic carbon fractions to forest conversions in subtropical China[J]. Tropical Ecology, 57(4):691-699. |
[18] | YANG P L, LUO Y P, SHI Y C, 1993. Soil fractal characteristics measured by mass of particle-size distribution[J]. Chinese Science Bulletin, 38(20):1896-1899. |
[19] |
ZHAO S Q, LIU S G, ZHOU D C, 2016. Prevalent vegetation growth enhancement in urban environment[J]. Proceedings of the National Academy of Sciences, 113(22):6313-6318.
DOI URL |
[20] | ZORAN M, SNEZANA S, ZLATAN R, et al., 2020. Effect of submontane beech forest substitution by artificial Lawson’s cypress stand on soil erodibility[J]. Fresenius Environmental Bulletin, 29(1):101-106. |
[21] | 鲍士旦, 2000. 土壤农化分析[M]. 北京: 中国农业出版社. |
BAO S D, 2000. Soil Agrochemical Analysis [M]. Beijing: China Agriculture Press. | |
[22] | 戴凌, 黄志宏, 文丽, 2014. 长沙市不同森林类型土壤养分含量与土壤酶活性[J]. 中南林业科技大学学报, 34(6):100-105. |
DAI L, HUANG Z H, WEN L, 2014. Soil nutrient content and soil enzyme activity in different forest types in Changsha City[J]. Journal of Central South University of Forestry & Technology, 34(6):100-105. | |
[23] | 冯秀秀, 2020. 秦岭太白山阔叶林不同海拔根际土壤胞外酶活性和微生物群落差异性研究[D]. 西安: 西北大学. |
FENG X X, 2020. Differences in extracellular enzyme activities and microbial communities in inter-root soils of broadleaf forests in the Taibai Mountains of the Qinling Mountains at different elevations[D]. Xi’an: Northwest University. | |
[24] | 胡琛, 贺云龙, 黄金莲, 等, 2020. 神农架4种典型针叶人工林土壤酶活性及其生态化学计量特征[J]. 林业科学研究, 33(04):143-150. |
HU C, HE Y L, HUANG J L, et al., 2020. Soil Enzyme Activity and Its Ecological Stoichiometry in Four Typical Coniferous Planted Forests in Shennongjia National Nature Reserve, China[J]. Forest Research, 33(04):143-150. | |
[25] | 黄龙, 胡慧, 包维楷, 等, 2021. 干旱背景下土壤酶活性对石砾含量变化的响应[J]. 应用与环境生物学报, 27(2):294-302. |
HUANG L, HU H, BAO W K, et al., 2021. Response of soil enzyme activity to changes in rock fragment content under drought condition[J]. Chinese Journal of Applied & Environmental Biology, 27(2):294-302. | |
[26] | 林立文, 邓羽松, 王金悦, 等, 2020. 南亚热带人工林种植对赤红壤团聚体分布及稳定性的影响[J]. 应用生态学报, 31(11):3647-3656. |
LIN L W, DENG Y S, WANG J Y, et al., 2020. Effects of plantation on aggregate distribution and stability of lateritic red soil in south subtropical China[J]. Chinese journal of Applied Ecology, 31(11):3647-3656. | |
[27] | 刘均阳, 周正朝, 苏雪萌, 2020. 植物根系对土壤团聚体形成作用机制研究回顾[J]. 水土保持学报, 34(3):267-273, 298. |
LIU J Y, ZHOU Z Z, SU X M, 2020. A review of the mechanism of plant roots on soil agglomerate formation[J]. Journal of Soil and Water Conservation, 34(3):267-273, 298. | |
[28] | 刘佩伶, 陈乐, 刘效东, 等, 2021. 鼎湖山不同演替阶段森林土壤水分时空变异研究[J]. 生态学报, 41(5):1798-1807. |
LIU P L, CHEN L, LIU X D, et al., 2021. Temporal and spatial variability of soil moisture in a forest succession series in Dinghushan[J]. Acta Ecologica Sinica, 41(5):1798-1807. | |
[29] | 吕明亮, 陈养飞, 方佐昭, 等, 2010. 柯城区不同林分类型生态公益林土壤理化性质初步研究[J]. 浙江林业科技, 30(2):70-72. |
LV M L, CHEN Y F, FANG Z Z, et al., 2010. Soil Physical and chemical properties of different types of ecological forest stands in Kecheng District [J]. China Academic Journal Electronic Publishing House, 30(2):70-72. | |
[30] | 吕娇, MUSTAQ SHAH, 崔义, 等, 2020. 土壤紧实度和凋落物覆盖对城市森林土壤持水、渗水能力的影响[J]. 北京林业大学学报, 42(8):102-111. |
LV J, MUSTAQ S, CUI Y, et al., 2020. Effects of soil compaction and apoplastic cover on water holding and infiltration capacity of urban forest soils[J]. Journal of Beijing Forestry University, 42(8):102-111. | |
[31] | 马寰菲, 胡汗, 李益, 等, 2021. 秦岭不同海拔土壤团聚体稳定性及其与土壤酶活性的耦合关系[J]. 环境科学, 42(9):4510-4519. |
MA H F, HU H, LI Y, et al., 2021. Stability of soil aggregates at different elevations in the Qinling Mountains and its coupling with soil enzyme activity[J]. Environmental Science, 42(9):4510-4519. | |
[32] | 彭晓, 方晰, 喻林华, 等, 2016. 中亚热带4种森林土壤碳、氮、磷化学计量特征[J]. 中南林业科技大学学报, 36(11):65-72. |
PENG X, FANG X, YU L H, et al., 2016. Chemometric characteristics of carbon, nitrogen and phosphorus in four forest soils in central subtropics[J]. Journal of Central South University of Forestry & Technology, 36(11):65-72. | |
[33] | 史丽娟, 王辉民, 付晓莉, 等, 2020. 中亚热带典型人工林土壤酶活性及其化学计量特征[J]. 应用生态学报, 31(6):1980-1988. |
SHI L J, WANG F M, FU X L, et al., 2020. Enzyme activities and stoichiometric characteristics of soils in typical plantation forests in central subtropics[J]. Chinese Journal of Applied Ecology, 31(6):1980-1988. | |
[34] | 孙筱璐, 唐佐芯, 尤业明, 等, 2018. 气候和林分类型对土壤团聚体有机碳的影响[J]. 广西植物, 38(3):341-351. |
SUN X L, TANG Z X, YOU Y M, et al., 2018. Effects of climate and forest types on soil aggregation organic carbon[J]. Guihaia, 38(3):341-351. | |
[35] | 孙利鹏, 2018. 子午岭天然辽东栎群落恢复影响土壤性质的过程和机制[D]. 杨凌: 西北农林科技大学. |
SUN L P, 2018. Processes and mechanisms of soil properties affected by natural Liaodong oak community restoration in Ziyuling [D]. Yangling: North West Agriculture and Forestry University. | |
[36] | 邵宜晶, 俞梦笑, 江军, 等, 2017. 鼎湖山3种演替阶段森林土壤C、N、P现状及动态[J]. 热带亚热带植物学报, 25(6):523-530. |
SHAO Y J, YU M X, JIANG J, et al., 2017. Status and Dynamic of Soil C, N and P of Three Forest Succession Gradient in Dinghushan[J]. Journal of Tropical and Subtropical Botany, 25(6):523-530. | |
[37] | 谭雪莲, 阚蕾, 张璐, 等, 2019. 城市森林土壤微生物群落结构的季节变化[J]. 生态学杂志, 38(11):3306-3312. |
TAN X L, KAN L, ZHANG L, et al., 2019. Seasonal changes in soil microbial community structure in urban forests[J]. Chinese Journal of Ecology, 38(11):3306-3312. | |
[38] | 魏书精, 罗碧珍, 孙龙, 等, 2013. 森林生态系统土壤呼吸时空异质性及影响因子研究进展[J]. 生态环境学报, 22(4):689-704. |
WEI S J, LUO B Z, SUN L, et al., 2013. Spatial and temporal heterogeneity and effect factors of soil respiration in forest ecosystems: A review[J]. Ecology and Environmental Sciences, 22(4):689-704. | |
[39] | 吴雪里慧, 魏亚伟, 马澜桐, 等, 2020. 辽西北半干旱区不同林型土壤团聚体与有机碳的关系[J]. 沈阳农业大学学报, 51(6):641-648. |
WU X L H, WEI Y W, MA L T, et al., 2020. Relationship between soil aggregates and organic carbon in different forest types in the semi-arid region of northwest Liaoning[J]. Journal of Shenyang Agricultural University, 51(6):641-648. | |
[40] | 王全成, 郑勇, 宋鸽, 等, 2021. 亚热带次级森林演替过程中模拟氮磷沉降对土壤微生物生物量及土壤养分的影响[J]. 生态学报, 41(15):6245-6256. |
WANG Q C, ZHENG Y, SONG D, et al., 2021. Effects of simulated nitrogen and phosphorus deposition on soil microbial biomass and soil nutrients during subtropical secondary forest succession[J]. Acta Ecologica Sinica, 41(15):6245-6256. | |
[41] | 吴梦瑶, 陈林, 庞丹波, 等, 2021. 贺兰山不同海拔植被下土壤团聚体分布及其稳定性研究[J]. 水土保持学报, 35(2):210-216. |
WU M Y, CHEN L, PANG D B, et al., 2021. Distribution and stability of soil aggregates under vegetation at different altitudes in the Helan Mountains[J]. Journal of Soil and Water Conservation, 35(2):210-216. | |
[42] | 魏强, 凌雷, 王多锋, 等, 2019. 不同海拔甘肃兴隆山主要森林群落的土壤理化性质[J]. 西北林学院学报, 34(4):26-35. |
WEI Q, LING L, WANG D F, et al., 2019. Soil physical and chemical properties of major forest communities in the Xinglong Mountains of Gansu at different elevations[J]. Journal of Northwest Forestry University, 34(4):26-35. | |
[43] | 吴鹏, 崔迎春, 赵文君, 等, 2019. 喀斯特森林植被自然恢复过程中土壤化学计量特征[J]. 北京林业大学学报, 41(3):80-92. |
WU P, CUI Y C, ZHAO W J, et al., 2019. Soil chemometric characteristics during natural recovery of karst forest vegetation[J]. Journal of Beijing Forestry University, 41(3):80-92. | |
[44] | 汪三树, 黄先智, 史东梅, 郭彦军, 等, 2013. 基于Le Bissonnais法的石漠化区桑树地埂土壤团聚体稳定性研究[J]. 生态学报, 33(18):5589-5598. |
WANG S S, HUANG X Z, SHI D M, GUO Y J, et al., 2013. Study on the stability of soil aggregates in mulberry ridges in stone desertification areas based on Le Bissonnais method[J]. Acta Ecologica Sinica, 33(18):5589-5598. | |
[45] | 王晓荣, 胡文杰, 庞宏东, 等, 2020. 湖北省主要森林类型土壤理化性质及土壤质量[J]. 中南林业科技大学学报, 40(11):156-166. |
WANG X R, HU W J, PANG H D, et al., 2020. Physicochemical properties and soil quality of major forest types in Hubei Province[J]. Journal of Central South University of Forestry Science & Technology, 40(11):156-166. | |
[46] | 王理德, 王方琳, 郭春秀, 等, 2016. 土壤酶学硏究进展[J]. 土壤, 48(1):12-21. |
WANG L D, WANG F L, GUO C X, et al., 2016. Soil enzymology research progress[J]. Soils, 48(1):12-21. | |
[47] | 王清奎, 汪思龙, 2005. 土壤团聚体形成与稳定机制及影响因素[J]. 土壤通报, 36(3):415-421. |
WANG Q K, WANG S L, 2005. Mechanism of soil agglomerate formation and stabilization and influencing factors[J]. Chinese Journal of Soil Science, 36(3):415-421. | |
[48] | 王勇, 张建辉, 李富程, 2015. 耕作侵蚀对坡耕地土壤水稳定性团聚体和水分特征的影响[J]. 水土保持学报, 29(1):180-185. |
WANG Y, ZHANG J H, LI F C, 2015. Effects of tillage erosion on soil water stability aggregates and moisture characteristics of sloping arable land[J]. Journal of Soil and Water Conservation, 29(1):180-185. | |
[49] | 谢天, 侯鹰, 陈卫平, 等, 2019. 城市化对土壤生态环境的影响研究进展[J]. 生态学报, 39(4):1154-1164. |
XIE T, HOU Y, CHEN W P, et al., 2019. Progress of research on the impact of urbanization on soil ecology[J]. Acta Ecologica Sinica, 39(4):1154-1164. | |
[50] | 于法展, 张茜, 张忠启, 等, 2016. 庐山不同森林植被对土壤团聚体及其有机碳分布的影响[J]. 水土保持研究, 23(6):15-19. |
YU F Z, ZHANG X, ZHANG Z Q, et al., 2016. Effects of Different Types of Forest Vegetation on the Distribution of Soil Aggregate and Its Organic Carbon in Lushan Mountain[J]. Research of Soil and Water Conservation, 23(6):15-19. | |
[51] | 周国逸, 李琳, 吴安驰, 2020. 气候变暖下干旱对森林生态系统的影响[J]. 南京信息工程大学学报(自然科学版), 12(1):81-88. |
ZHOU G Y, LI L, WU A C, 2020. Impact of drought on forest ecosystems under climate warming[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 12(1):81-88. | |
[52] | 赵维娜, 2016. 磨盘山三种林分土壤理化性质、微生物数量对土壤酶活性影响的研究[D]. 昆明: 西南林业大学. |
ZHAO W N, 2016. Study on the effects of soil physicochemical properties and microbial population on soil enzyme activity in three forest stands in Millpan Mountain [D]. Kunming: Southwest Forestry University. | |
[53] | 赵伟红, 2014. 冀北辽河源山地典型森林群落土壤理化特征研究[D]. 北京: 北京林业大学. |
ZHAO W H, 2014. Soil physicochemical characteristics of typical forest communities in the Jibei Liaoheyuan Mountains [D]. Beijing: Beijing Forestry University. | |
[54] | 赵友朋, 孟苗婧, 张金池, 等, 2018. 不同林地类型土壤团聚体稳定性与铁铝氧化物的关系[J]. 水土保持通报, 38(4):75-81. |
ZHAO Y P, MENG M J, ZHANG J C, et al., 2018. Relationship between soil aggregate stability and iron and aluminum oxides in different forest land types[J]. Bulletin of Soil and Water Conservation, 38(4):75-81. | |
[55] | 张星星, 杨柳明, 陈忠, 等, 2018. 中亚热带不同母质和森林类型土壤生态酶化学计量特征[J]. 生态学报, 38(16):5828-5836. |
ZHANG X X, YANG L M, CHEN Z, et al., 2018. Chemometric characteristics of soil ecological enzymes in different parent material and forest types in the central subtropics[J]. Acta Ecologica Sinica, 38(16):5828-5836. | |
[56] | 中华人民共和国农业部, 2007. 土壤pH的测定: NY/T 1377—2007[S]. |
Ministry of Agriculture of the PRC, 2007. Determination of soil pH: NY/T 1377—2007[S]. | |
[57] | 钟晓兰, 李江涛, 李小嘉, 等, 2015. 模拟氮沉降增加条件下土壤团聚体对酶活性的影响[J]. 生态学报, 35(5):1422-1433. |
ZHONG X L, LI J T, LI X J, et al., 2015. Effects of soil aggregates on enzyme activity under simulated increased nitrogen deposition[J]. Acta Ecologica Sinica, 35(5):1422-1433. |
[1] | 周沁苑, 董全民, 王芳草, 刘玉祯, 冯斌, 杨晓霞, 俞旸, 张春平, 曹铨, 刘文亭. 放牧方式对高寒草地瑞香狼毒根际土壤团聚体及有机碳特征的影响[J]. 生态环境学报, 2023, 32(4): 660-667. |
[2] | 张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458. |
[3] | 夏梓泰, 程伟威, 赵吉霞, 李永梅, 范茂攀. 不同种植模式对玉米根系及土壤团聚体稳定性的影响[J]. 生态环境学报, 2021, 30(12): 2331-2338. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||