生态环境学报 ›› 2021, Vol. 30 ›› Issue (9): 1805-1813.DOI: 10.16258/j.cnki.1674-5906.2021.09.004
王玄1,2(), 熊鑫1, 张慧玲1, 赵梦頔1,2, 胡明慧1,2, 褚国伟1, 孟泽1, 张德强1,*(
)
收稿日期:
2021-07-16
出版日期:
2021-09-18
发布日期:
2021-12-08
通讯作者:
*E-mail: zhangdeq@scib.ac.cn作者简介:
王玄(1992年生),男,硕士研究生,研究方向为生态系统生态学。E-mail: wangx@scbg.ac.cn
基金资助:
WANG Xuan1,2(), XIONG Xin1, ZHANG Huiling1, ZHAO Mengdi1,2, HU Minghui1,2, CHU Guowei1, MENG Ze1, ZHANG Deqiang1,*(
)
Received:
2021-07-16
Online:
2021-09-18
Published:
2021-12-08
摘要:
基于鼎湖山野外模拟酸雨长期实验平台,以原位分解实验探讨凋落物分解和土壤呼吸过程对酸雨胁迫的响应与适应机制。设置3个不同处理水平的模拟酸雨,即CK(pH=4.5的天然湖水)、T1(pH=3.5)和T2(pH=3.0)。选取鼎湖山针阔叶混交林试验地优势树种木荷(Schima superba)和锥(Castanopsis chinensis)叶凋落物,置于PVC分解环中进行原位分解实验,每月测定分解环的土壤呼吸速率。15个月(2019年9月—2021年1月)的实验结果显示,CK、T1和T2处理下的木荷和锥凋落物分解残留率分别为37.94%、40.63%、44.14%和21.92%、40.27%、48.72%;在分解早期(2019年9月—2020年4月),不同酸处理水平间没有表现出显著差异(P>0.05),而在分解后期(2020年5月至2021年1月)CK和T2处理间差异显著(P<0.05)。对照组(未覆盖凋落物的分解环)和覆盖木荷凋落物组中,模拟酸雨显著降低了年土壤呼吸通量(P<0.05),但T1和T2处理间差异不显著(P>0.05);覆盖锥凋落物组T2处理下的年土壤呼吸通量显著低于CK处理(P<0.05),但CK和T1、T1和T2处理间差异不显著(P>0.05)。结果表明,高强度的模拟酸雨(pH=3.0)抑制了木荷和锥叶凋落物的分解,但这种抑制作用只在凋落物分解的后期显现。模拟酸雨抑制了土壤呼吸,凋落物覆盖在一定程度上减缓了这种抑制作用,这种减缓效应与凋落物类型及酸雨强度有关。
中图分类号:
王玄, 熊鑫, 张慧玲, 赵梦頔, 胡明慧, 褚国伟, 孟泽, 张德强. 模拟酸雨对南亚热带森林凋落物分解和土壤呼吸的影响[J]. 生态环境学报, 2021, 30(9): 1805-1813.
WANG Xuan, XIONG Xin, ZHANG Huiling, ZHAO Mengdi, HU Minghui, CHU Guowei, MENG Ze, ZHANG Deqiang. Effects of Simulated Acid Rain on Litter Decomposition and Soil Respiration in A Low Subtropical Forest[J]. Ecology and Environment, 2021, 30(9): 1805-1813.
图1 凋落物分解实验小区示意图(a)和实例图(b) C:对照组(未覆盖凋落物),M:覆盖木荷凋落物组,Z:覆盖锥凋落物组,下同。M1、Z1:凋落物第一次采样
Fig. 1 Layout (a) and example (b) of litter decomposition experiment plot C: control group (without litter cover); M: Schima superba litter cover group; Z: Castanopsis chinensis litter cover group, The same below. M1, Z1: Litter sampling for the first time
图2 不同酸度处理下木荷(a)和锥(b)凋落物的分解残留率 n=5;CK:pH=4.5,T1:pH=3.5,T2:pH=3.0。 P值为重复测量方差分析结果。下同
Fig. 2 Litter decomposition residual rate of Schima superba (a) and Castanopsis chinensis (b) among different acid treatments P value is the result of repeated measures ANOVA. The same below
图3 不同酸度处理下未覆盖凋落物的对照组(a)、覆盖木荷凋落物组(b)和覆盖锥凋落物组(c)土壤呼吸速率的季节动态(2019年10月—2021年1月)
Fig. 3 Seasonal dynamics in soil respiration rates of without litter (a), schima superba litter (b) and Castanopsis chinensis litter (c) among different acid treatments (from October 2019 to January 2021)
图4 不同酸度处理间的年土壤呼吸通量(2020年1月—2021年1月) 不同大写字母表示同一酸度处理下差异显著(P<0.05),不同小写字母表示不同酸度处理间差异显著(P<0.05)。下同
Fig. 4 Annual soil respiration fluxes among different acid treatments (January 2020 to January 2021) Different lowercase letters indicate significant differences among different acid treatments (P<0.05). The same below
图5 不同酸度处理下土壤温度(a)和土壤湿度(b)的季节动态(2019年10月—2021年1月)
Fig. 5 Seasonal dynamics in soil temperature (a) and soil moisture (b) among different acid treatments (October 2019 to January 2021)
组别 Group | 处理 Treatment | R=aebt | R=aM+b | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a | b | P | Q10 | r2 | a | b | P | r2 | |||
C | CK | 234.65±63.61 | 0.043±0.012 | 0.004 | 1.54 | 0.521 | 169.377±162.896 | 25.955±8.642 | 0.011 | 0.429 | |
T1 | 57.57±14.57 | 0.095±0.011 | 0.000 | 2.59 | 0.859 | -94.247±215.172 | 35.073±11.415 | 0.010 | 0.440 | ||
T2 | 69.65±24.94 | 0.079±0.016 | 0.000 | 2.20 | 0.676 | -89.499±189.842 | 30.014±10.072 | 0.011 | 0.425 | ||
M | CK | 195.91±53.31 | 0.051±0.012 | 0.001 | 1.67 | 0.600 | 121.230±172.056 | 28.588±9.128 | 0.009 | 0.450 | |
T1 | 63.49±16.86 | 0.093±0.012 | 0.000 | 2.53 | 0.841 | -51.622±199.044 | 34.133±10.560 | 0.007 | 0.465 | ||
T2 | 96.06±41.05 | 0.071±0.019 | 0.003 | 2.03 | 0.546 | -75.763±243.632 | 33.656±12.925 | 0.023 | 0.361 | ||
Z | CK | 239.75±86.82 | 0.041±0.016 | 0.025 | 1.51 | 0.354 | 328.572±224.551 | 16.739±11.913 | 0.185 | 0.141 | |
T1 | 115.08±37.74 | 0.070±0.014 | 0.000 | 2.01 | 0.664 | -96.607±163.836 | 38.514±8.692 | 0.001 | 0.621 | ||
T2 | 71.42±28.60 | 0.085±0.018 | 0.000 | 2.34 | 0.660 | -153.684±217.973 | 38.474±11.564 | 0.006 | 0.480 |
表1 模型R=aebt和R=aM+b分别拟合土壤呼吸速率与0—10 cm土壤温度和土壤湿度的关系
Table 1 Models R=aebt and R=aM+b fit the relationship between soil respiration rate (R, mg∙m-2∙h-1) and soil temperature (t, ℃) and soil moisture (M, %) between 0 and 10 cm, respectively
组别 Group | 处理 Treatment | R=aebt | R=aM+b | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a | b | P | Q10 | r2 | a | b | P | r2 | |||
C | CK | 234.65±63.61 | 0.043±0.012 | 0.004 | 1.54 | 0.521 | 169.377±162.896 | 25.955±8.642 | 0.011 | 0.429 | |
T1 | 57.57±14.57 | 0.095±0.011 | 0.000 | 2.59 | 0.859 | -94.247±215.172 | 35.073±11.415 | 0.010 | 0.440 | ||
T2 | 69.65±24.94 | 0.079±0.016 | 0.000 | 2.20 | 0.676 | -89.499±189.842 | 30.014±10.072 | 0.011 | 0.425 | ||
M | CK | 195.91±53.31 | 0.051±0.012 | 0.001 | 1.67 | 0.600 | 121.230±172.056 | 28.588±9.128 | 0.009 | 0.450 | |
T1 | 63.49±16.86 | 0.093±0.012 | 0.000 | 2.53 | 0.841 | -51.622±199.044 | 34.133±10.560 | 0.007 | 0.465 | ||
T2 | 96.06±41.05 | 0.071±0.019 | 0.003 | 2.03 | 0.546 | -75.763±243.632 | 33.656±12.925 | 0.023 | 0.361 | ||
Z | CK | 239.75±86.82 | 0.041±0.016 | 0.025 | 1.51 | 0.354 | 328.572±224.551 | 16.739±11.913 | 0.185 | 0.141 | |
T1 | 115.08±37.74 | 0.070±0.014 | 0.000 | 2.01 | 0.664 | -96.607±163.836 | 38.514±8.692 | 0.001 | 0.621 | ||
T2 | 71.42±28.60 | 0.085±0.018 | 0.000 | 2.34 | 0.660 | -153.684±217.973 | 38.474±11.564 | 0.006 | 0.480 |
[1] |
ATKIN O K, EDWARDS E J, LOVEYS B R, 2000. Research Review: Response of Root Respiration to Changes in Temperature and Its Relevance to Global Warming[J]. New Phytologist, 147(1): 141-154.
DOI URL |
[2] |
BååTH E, WALLANDER H, 2003. Soil and rhizosphere microorganisms have the same Q10 for respiration in a model system[J]. Global Change Biology, 9(12): 1788-1791.
DOI URL |
[3] |
BLAGODATSKY S, BLAGODATSKAYA E, YUYUKINA T, et al., 2010. Model of apparent and real priming effects: linking microbial activity with soil organic matter decomposition[J]. Soil Biology & Biochemistry, 42(8): 1275-1283.
DOI URL |
[4] |
BOND L B, THOMSON A, 2010. Temperature-associated increases in the global soil respiration record[J]. Nature, 464(7288): 132-579.
DOI URL |
[5] |
CHEN S T, ZHANG X, LIU Y F, et al., 2015. Simulated acid rain changed the proportion of heterotrophic respiration in soil respiration in a subtropical secondary forest[J]. Applied Soil Ecology, 86: 148-157.
DOI URL |
[6] |
DANGLES O, GESSNER M O, GUEROLD F, et al., 2004. Impacts of stream acidification on litter breakdown: implications for assessing ecosystem functioning[J]. Journal of Applied Ecology, 41(2): 365-378.
DOI URL |
[7] |
DUAN L, YU Q, ZHANG Q, et al., 2016. Acid deposition in Asia: Emissions, deposition, and ecosystem effects[J]. Atmospheric Environment, 146: 55-69.
DOI URL |
[8] |
FENG Q, LI Y L, WEN J H, et al., 2021. Analysis of wet deposition characteristics in the city of Guilin, China[J]. Environmental monitoring and assessment, DOI: 10.1007/s10661-021-09396-1.
DOI |
[9] |
GUENET J, LELOUP X, RAYNAUD G, et al., 2010. Negative priming effect on mineralization in a soil free of vegetation for 80 years[J]. European Journal of Soil Science, 61(3): 384-391.
DOI URL |
[10] |
HUANG W J, HAN T F, LIU J X, et al., 2016. Changes in soil respiration components and their specific respiration along three successional forests in the subtropics[J]. Functional Ecology, 30(8): 1466-1474.
DOI URL |
[11] |
JOHNSON J, PANNATIER E G, CARNICELLI S, et al., 2018. The response of soil solution chemistry in European forests to decreasing acid deposition[J]. Global Change Biology, 24(8): 3603-3619.
DOI URL |
[12] |
LARSSEN T, CARMICHAEL G R, 2000. Acid rain and acidification in China: the importance of base cation deposition[J]. Environmental Pollution, 110(1): 89-102.
DOI URL |
[13] |
LEHMANN J, KLEBER M, 2015. The contentious nature of soil organic matter[J]. Nature, 528(7580): 60-68.
DOI URL |
[14] |
LUO Y Q, WAN S Q, HUI D F, et al., 2001. Acclimatization of soil respiration to warming in a tall grass prairie[J]. Nature, 413(6856): 622-625.
DOI URL |
[15] |
LV Y N, WANG C Y, JIA Y Y, et al., 2014. Effects of sulfuric, nitric, and mixed acid rain on litter decomposition, soil microbial biomass, and enzyme activities in subtropical forests of China[J]. Applied Soil Ecology, 79: 1-9.
DOI URL |
[16] |
LYU M K, XIE J S, MATTHEW A, et al., 2018. Simulated leaf litter addition causes opposite priming effects on natural forest and plantation soils[J]. Biology and Fertility of Soils, 54(8): 925-934.
DOI URL |
[17] |
PRESCOTT C E, 2010. Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils?[J]. Biogeochemistry, 101: 133-149.
DOI URL |
[18] |
QIU Q Y, WU J P, LIANG G H, et al., 2015. Effects of simulated acid rain on soil and soil solution chemistry in a monsoon evergreen broad-leaved forest in southern China[J]. Environmental monitoring and assessment, 187(5): 272. 1-272.13.
DOI URL |
[19] |
RAICH J W, SCHLESINGER W H, 1992. The global carbon-dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus Series B-Chemical and Physical Meteorology, 44: 81-99.
DOI URL |
[20] |
REY A, PEGORARO E, TEDESCHI V, et al., 2002. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy[J]. Global Change Biology, 8(9): 851-866.
DOI URL |
[21] |
ROBERT B J, KATE L, SUSAN E C, et al., 2017. The ecology of soil carbon: Pools, vulnerabilities, and biotic and abiotic controls[J]. Annual Review of Ecology, Evolution, and Systematics, 48: 419-445.
DOI URL |
[22] |
SCHABERG P G, DEHAYES D H, HAWLEY G J, 2001. Anthropogenic Calcium Depletion: A Unique Threat to Forest Ecosystem Health?[J]. Ecosystem Health, 7(4): 214-228.
DOI URL |
[23] |
SULZMAN E W, BRANT J B, BOWDEN R D, et al., 2005. Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest[J]. Biogeochemistry, 73(1): 231-256.
DOI URL |
[24] |
TANG L, LIN Y H, HE X B, et al., 2019. Acid rain decelerates the decomposition of Cunninghamia lanceolata needle and Cinnamomum camphora leaf litters in a karst region in China[J]. Ecological Research, 34(1): 193-200.
DOI URL |
[25] |
TANG X L, LIU S G, ZHOU G Y, et al., 2006. Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China[J]. Global Change Biology, 12(3): 546-560.
DOI URL |
[26] | VASCONCELOS S S, ZARIN D J, CAPANU M, et al., 2004. Moisture and substrate availability constrain soil trace gas fluxes in an eastern Amazonian regrowth forest[J]. Global Biogeochemical Cycles, 18(2): 193-204. |
[27] |
WANG C, GUO P, HAN G, et al., 2010. Effect of simulated acid rain on the litter decomposition of Quercus acutissima and Pinus massoniana in forest soil microcosms and the relationship with soil enzyme activities[J]. Science of the Total Environment, 408(13): 2706-2713.
DOI URL |
[28] | WANG Q, KWAK J H, CHOI W J, et al., 2018. Decomposition of trembling aspen leaf litter under long-term nitrogen and sulfur deposition: Effects of litter chemistry and forest floor microbial properties[J]. Forest Ecology and Management, 41: 53-61. |
[29] |
WARDLE D A, BARDGETT R D, KLIRONOMOS J N, et al., 2004. Ecological linkages between aboveground and belowground biota[J]. Science, 304(5677): 1629-1633.
DOI URL |
[30] |
WU J P, LIANG G H, HUI D F, et al., 2016. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China[J]. Science of the Total Environment, 544: 94-102.
DOI URL |
[31] |
XU M, QI Y, 2001. Spatial and seasonal variations of Q10 determined by soil respiration measurements at a Sierra Nevadan Forest[J]. Global Biogeochemical Cycles, 15(3): 687-696.
DOI URL |
[32] |
ZHANG J E, YING O, LING D J, 2007. Impacts of simulated acid rain on cation leaching from the Latosol in south China[J]. Chemosphere, 67(11): 2131-2137.
DOI URL |
[33] |
ZHENG W, LI R, YANG Q, et al., 2019. Short-term response of soil respiration to simulated acid rain in Cunninghamia lanceolata and Michelia macclurei plantations[J]. Journal of Soils and Sediments, 19(3): 1239-1249.
DOI URL |
[34] |
ZIMMERMANN M, MEIR P, BIRD M, et al., 2009. Litter contribution to diurnal and annual soil respiration in a tropical montane cloud forest[J]. Soil Biology and Biochemistry, 41(6): 1338-1340.
DOI URL |
[35] | 陈璇, 章家恩, 向慧敏, 等, 2020. 2008-2018年广东省酸雨的变化趋势研究[J]. 生态环境学报, 29(6): 1198-1204. |
CHEN X, ZHANG J E, XIANG H M, et al., 2020. Study on the changing trend of acid rain in Guangdong province from 2008 to 2018 [J]. Ecology and Environmental Sciences, 29(6): 1198-1204. | |
[36] | 程锦萍, 王鹭, 唐志珍, 等, 2021. 模拟酸雨对我国亚热带森林土壤有机碳矿化的影响研究[J/OL]. 农业资源与环境学报: 1-11[2021-09-08]. https://doi.org/10.13254/j.jare.2021.0093. |
CHENG J P, WANG L, TANG Z Z, et al., 2021. Effects of simulated acid rain on soil organic carbon mineralization in subtropical forests of China[J]. Journal of agricultural resources and environment: 1-11 [2021-09-08]. https://doi.org/10.13254/j.jare.2021.0093. | |
[37] | 洪江华, 江洪, 马元丹, 等, 2009. 模拟酸雨对亚热带典型树种叶凋落物分解的影响[J]. 生态学报, 29(10): 5246-5251. |
HONG J H, JIANG H, MA Y D, et al., 2009. Effects of simulated acid rain on leaf litter decomposition of typical subtropical tree species[J]. Acta Ecologica Sinica, 29(10): 5246-5251. | |
[38] | 胡苑柳, 陈国茵, 陈静文, 等, 2021. 模拟酸沉降对南亚热带季风常绿阔叶林土壤微生物群落结构的长期影响[J]. 植物生态学报, 45(3): 298-308. |
HU Y L, CHEN G Y, CHEN J W, et al., 2021. Long-term effects of simulated acid deposition on soil microbial community structure in a subtropical monsoon evergreen broad-leaved forest[J]. Chinese Journal of Plant Ecology, 45(3): 298-308.
DOI URL |
|
[39] | 季晓燕, 江洪, 洪江华, 等, 2013. 模拟酸雨对亚热带三个树种凋落叶分解速率及分解酶活性的影响[J]. 环境科学学报, 33(7): 2027-2035. |
JI X Y, JIANG H, HONG J H, et al., 2013. Effects of simulated acid rain on leaf litter decomposition rate and enzymatic activity of three subtropical tree species[J]. Chinese Journal of Environmental Sciences, 33(7): 2027-2035. | |
[40] | 江军, 曹楠楠, 俞梦笑, 等, 2019. 酸性森林土壤缓冲酸沉降关键机理研究进展[J]. 热带亚热带植物学报, 27(5): 491-499. |
JIANG J, CAO N N, YU M X, et al., 2019. Research progress on key mechanisms of buffer acid deposition in acidic forest soil[J]. Journal of Tropical and Subtropical Botany, 27(5): 491-499. | |
[41] | 李雅红, 2010. 酸雨胁迫下3种典型常绿阔叶林树种土壤呼吸的特征及影响因子[D]. 重庆: 西南大学: 34-35. |
LI Y H, 2010. Characteristics and affecting factors of soil respiration of three typical evergreen broad-leaved forest tree species under acid rain stress[D]. Chongqing: Southwest University: 34-35. | |
[42] | 梁国华, 吴建平, 熊鑫, 等, 2015. 鼎湖山不同演替阶段森林土壤pH值和土壤微生物量碳氮对模拟酸雨的响应[J]. 生态环境学报, 24(6): 911-918. |
LIANG G H, WU J P, XIONG X, et al., 2015. Responses of soil pH value and soil microbial biomass carbon and nitrogen to simulated acid rain in three successional subtropical forests at Dinghushan Nature Reserve[J]. Ecology and Environmental Sciences, 24(6): 911-918. | |
[43] | 刘菊秀, 周国逸, 张德强, 2003. 酸雨对鼎湖山土壤的累积效应及荷木的反应[J]. 中国环境科学, 23(1): 91-95. |
LIU J X, ZHOU G Y, ZHANG D Q, 2003. Accumulative effect of acid rain on soil of Dinghu Mountain and the reaction of Schizophyllum sinensis[J]. China Environmental Science, 23(1): 91-95. | |
[44] | 刘源月, 江洪, 李雅红, 等, 2010. 模拟酸雨对杉木幼苗-土壤复合体系土壤呼吸的短期效应[J]. 生态学报, 30(8): 2010-2017. |
LIU Y Y, JIANG H, LI Y H, et al., 2010. Short-term effects of simulated acid rain on soil respiration in Chinese fir seedlings and soil composite system[J]. Acta Ecologica Sinica, 30(8): 2010-2017. | |
[45] | 刘源月, 江洪, 李雅红, 等, 2011. 模拟酸雨对亚热带阔叶树苗土壤呼吸的影响[J]. 土壤学报, 48(3): 563-569. |
LIU Y Y, JIANG H, LI Y H, et al., 2011. Effects of simulated acid rain on soil respiration of subtropical broadleaved seedlings[J]. Acta Pedologica Sinica, 48(3): 563-569. | |
[46] | 刘自强, 危晖, 章家恩, 等, 2019. 酸雨对土壤呼吸的影响机制研究进展与展望[J]. 土壤, 51(5): 843-853. |
LIU Z Q, WEI H, ZHANG J E, et al., 2019. Research progress and prospects of the influence mechanism of acid rain on soil respiration[J]. Soil, 51(5): 843-853. | |
[47] | 仇荣亮, 于锡军, 1998. 陆地生态系统酸沉降缓冲机制与缓冲能力[J]. 中山大学学报 (自然科学版), 37(S2): 161-165. |
QIU R L, YU X J, 1998. The buffer mechanism and buffer capacity of acid deposition in terrestrial ecosystem[J]. Journal of Sun Yat-sen University (Natural Science Edition), 37(S2): 161-165. | |
[48] | 孙鹭, 2018. 长期模拟酸雨对北亚热带次生林土壤呼吸及酶活性的影响[D]. 南京: 南京信息工程大学: 22-23. |
SUN L, 2018. The effects of long-term simulated acid rain on soil respiration and enzyme activities in northern subtropical secondary forests[D]. Nanjing: Nanjing University of Information Science and Technology: 22-23. | |
[49] | 孙丽娟, 曾辉, 郭大立, 2011. 鼎湖山亚热带常绿针阔叶混交林凋落物及矿质氮输入对土壤有机碳分解的影响[J]. 应用生态学报, 22(12): 3087-3093. |
SUN L J, ZENG H, GUO D L, 2011. Effects of litter and mineral nitrogen input on soil organic carbon decomposition in a subtropical evergreen coniferous and broad-leaved mixed forest, Denhushan, China[J]. Journal of Applied Ecology, 22(12): 3087-3093. | |
[50] | 王春林, 周国逸, 唐旭利, 等, 2007. 鼎湖山针阔叶混交林生态系统呼吸及其影响因子[J]. 生态学报, 27(7): 2659-2668. |
WANG C L, ZHOU G Y, TANG X L, et al., 2007. Ecosystem respiration and its influencing factors in a mixed coniferous and broad-leaved forest in Dinghushan, China[J]. Acta Ecologica Sinica, 27(7): 2659-2668.
DOI URL |
|
[51] | 王娇, 关欣, 黄苛, 等, 2021. 酸沉降对森林生态系统碳循环关键过程的影响研究进展[J]. 应用与环境生物学报, 27(3): 776-785. |
WANG J, GUAN X, HUANG Q, et al., 2021. Effects of acid deposition on key processes of carbon cycle in forest ecosystems: a review[J]. Chinese Journal of Applied & Environmental Biology, 27(3): 776-785. | |
[52] | 王光军, 田大伦, 闫文德, 等, 2009a. 马尾松林土壤呼吸对去除和添加凋落物处理的响应[J]. 林业科学, 45(1): 27-30. |
WANG G J, TIAN D L, YAN W D, et al., 2009a. Response of soil respiration to litter removal and litter addition in Pinus massoniana forest[J]. Journal of Forest Science, 45(1): 27-30. | |
[53] | 王光军, 田大伦, 闫文德, 等, 2009b. 去除和添加凋落物对枫香 (Liquidambar formosana) 和樟树 (Cinnamomum camphora) 林土壤呼吸的影响[J]. 生态学报, 29(2): 643-652. |
WANG G J, TIAN D L, YAN W D, et al., 2009b. Effects of litter removal and addition on soil respiration in a Liquidambar formosana and Cinnamomum camphora forest[J]. Acta Ecologica Sinica, 29(2): 643-652. | |
[54] | 王楠, 潘小承, 白尚斌, 2020. 模拟酸雨对我国亚热带毛竹林土壤呼吸及微生物多样性的影响[J]. 生态学报, 40(10): 3420-3430. |
WANG N, PAN X C, BAI S B, 2020. Effects of simulated acid rain on soil respiration and microbial diversity in subtropical moso bamboo forest in China[J]. Acta Ecologica Sinica, 40(10): 3420-3430. | |
[55] | 吴鹏, 崔迎春, 赵文君, 等, 2015. 改变凋落物输入对喀斯特森林主要演替群落土壤呼吸的影响[J]. 北京林业大学学报, 37(9): 17-27. |
WU P, CUI Y C, ZHAO W J, et al., 2015. Effects of litter input on soil respiration in major succession communities in a karst forest[J]. Journal of Beijing Forestry University, 37(9): 17-27. | |
[56] | 谢小赞, 江洪, 余树全, 等, 2009. 模拟酸雨胁迫对马尾松和杉木幼苗土壤呼吸的影响[J]. 生态学报, 29(10): 5713-5720. |
XIE X Z, JIANG H, YU S Q, et al., 2009. Effects of simulated acid rain stress on soil respiration of Pinus mazoniana and Cunnerhamia lancea seedlings[J]. Acta Ecologica Sinica, 29(10): 5713-5720. | |
[57] | 杨玉盛, 董彬, 谢锦升, 等, 2004. 森林土壤呼吸及其对全球变化的响应[J]. 生态学报, 24(3): 583-591. |
YANG Y S, DONG B, XIE J S, et al., 2004. Forest soil respiration and its response to global change[J]. Acta Ecologica Sinica, 24(3): 583-591. | |
[58] | 周存宇, 张德强, 王跃思, 等, 2004. 鼎湖山针阔叶混交林地表温室气体排放的日变化[J]. 生态学报, 24(8): 1741-1745. |
ZHOU C Y, ZHANG D Q, WANG Y S, et al., 2004. Diurnal variation of surface greenhouse gas emissions in a coniferous and broad-leaved mixed forest in Dinghushan, China[J]. Acta Ecologica Sinica, 24(8): 1741-1745. | |
[59] | 周小刚, 郭胜利, 车升国, 等, 2012. 黄土高原刺槐人工林地表凋落物对土壤呼吸的贡献[J]. 生态学报, 32(7): 2150-2157. |
ZHOU X G, GUO S L, CHE S G, et al., 2012. Contributing of litter to soil respiration in Robinia pseudoacacia plantation on the Loess Plateau[J]. Acta Ecologica Sinica, 32(7): 2150-2157.
DOI URL |
|
[60] | 朱圣洁, 王雪梅, 龙晓娟, 等, 2011. 鼎湖山降水无机化学成分变化特征[J]. 中山大学学报 (自然科学版), 50(5): 135-141. |
ZHU S J, WANG X M, LONG X J, et al., 2011. Variation characteristics of inorganic chemical composition of precipitation in Dinghushan Mountains[J]. Journal of Sun Yat-sen University (Natural Science), 50(5): 135-141. |
[1] | 李勋, 崔宁洁, 张艳, 覃宇, 张健. 马尾松与乡土阔叶树种凋落叶纤维素、总酚以及缩合单宁降解的混合效应[J]. 生态环境学报, 2022, 31(9): 1813-1822. |
[2] | 温智峰, 魏识广, 李林, 叶万辉, 练琚愉. 南亚热带常绿阔叶林植物不同分类水平上的空间分布格局及空间关联[J]. 生态环境学报, 2022, 31(3): 440-450. |
[3] | 张天霖, 蔡章林, 赵厚本, 吴仲民, 周光益, 邱治军. 13C脉冲标记法研究非正常凋落物对土壤有机碳的激发效应[J]. 生态环境学报, 2021, 30(9): 1797-1804. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||