[1] |
BAI J H, 2013. Photosynthetically active radiation loss in the atmosphere in North China[J]. Atmospheric Pollution Research, 4(4): 411-419.
DOI
URL
|
[2] |
BAI J H, 2017. UV extinction in the atmosphere and its spatial variation in North China[J]. Atmospheric Environment, 154: 318-330.
DOI
URL
|
[3] |
BAI J H, BAKER B, LIANG BS, et al., 2006. Isoprene and monoterpene emissions from an Inner Mongolia grassland[J]. Atmospheric Environment, 40(30): 5753-5758.
DOI
URL
|
[4] |
BAI J H, DE LEEUW G, VAN DER A R, et al., 2018. Variations and photochemical transformations of atmospheric constituents in North China[J]. Atmospheric Environment, 189: 213-226.
DOI
URL
|
[5] |
BAI J H, GUENTHER A, TURNIPSEED A, et al., 2017. Seasonal and interannual variations in whole-ecosystem BVOC emissions from a subtropical plantation in China[J]. Atmospheric Environment, 161: 176-190.
DOI
URL
|
[6] |
BRASSEUR G P, ORLANDO J J, TYNDALL G S, 1999. Atmospheric Chemistry and Globe Change[M]. New York: Oxford: Oxford University Press:325-347.
|
[7] |
CHEN C, PARK T J, WANG X H, et al., 2019. Earth’s green patches become greener-and China is leading the way[J]. Nature Sustainability, 2: 122-129.
DOI
URL
|
[8] |
CLAEYS M, GRAHAM B, VAS G, et al., 2004. Formation of secondary organic aerosols through photooxidation of isoprene[J]. Science, 303: 1173-1176.
DOI
URL
|
[9] |
FAUST B C, POWELL K, RAO C J, et al., 1997. Aqueous-phase photolysis of biacetyl (an α-dicarbonyl compound): a sink for biacetyl, and a source of acetic acid, peroxyacetic acid, hydrogen peroxide, and the highly oxidizing acetylperoxyl radical in aqueous aerosols, fogs, and clouds[J]. Atmospheric Environment, 31: 497-510.
DOI
URL
|
[10] |
FU Y, LIAO H, 2012. Simulation of the interannual variations of biogenic emissions of volatile organic compounds in China Impacts on tropospheric ozone and secondary organic aerosol[J]. Atmospheric Environment, 59: 170-185.
DOI
URL
|
[11] |
GUENTHER A B, ZIMMERMAN P R, HARLY P, 1993. Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses[J]. Journal of Geophysical Research, 98(D7): 12609-12617.
DOI
URL
|
[12] |
HOROWITZ A, MELLER R, MOORTGAT G K, 2001. The UV-VIS absorption cross sections of the α-dicarbonyl compounds: pyruvic acid, biacetyl and glyoxal[J]. Journal of Photochemistry and Photobiology A: Chemistry, 146(1-2): 19-27.
DOI
URL
|
[13] |
HUANG R J, ZHANG Y, BOZZETTI C, et al., 2014. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 514: 218-222.
DOI
URL
|
[14] |
KANAKIDOU M, SEINFELD J H, PANDIS S N, et al., 2005. Organic aerosol and global climate modelling: A review[J]. Atmospheric Chemistry and Physics, 5: 1053-1123.
DOI
URL
|
[15] |
KIENDLER-SCHARR A, WILDT J, MASO M D, et al., 2009. New particle formation in forests inhibited by isoprene emissions[J]. Nature, 461: 381-384.
DOI
URL
|
[16] |
MARTIN R V, JACOB D J, YANTOSCA R M, et al., 2003. Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols[J]. Journal of Geophysical Research:Atmospheres, 108(D3): 4097.
|
[17] |
ORPHAL J, CHANCE K, 2003. Ultraviolet and visible absorption cross- sections for HITRAN[J]. Journal of Quantitative Spectroscopy & Radiative Transfer 82:491-504.
|
[18] |
PALMER P I, DORIAN S A, FU T M, et al., 2006. Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of formaldehyde column[J]. Journal of Geophysical Research, DOI:10.1029/2005JD006689.
DOI
|
[19] |
RAJAKUMAR B, FLAD J E, GIERCZAK T, et al., 2007. Visible absorption spectrum of the CH3CO radical[J]. Journal of Physical Chemistry A, 111(37): 8950-8958.
DOI
URL
|
[20] |
ROEHL C M, ORLANDO J J, CALVERT J G, 1992. The temperature-dependence of the UV visible absorption cross-sections of NOCl[J]. Journal of Photochemistry and Photobiology A: Chemistry, 69(1): 1-5.
DOI
URL
|
[21] |
SANDER S P, 1986. Temperature dependence of the nitrogen trioxide absorption spectrum[J]. The Journal of Physical Chemistry, 90: 4135-4142.
DOI
URL
|
[22] |
SITU S, GUENTHER A, WANG X M, et al., 2013. Impacts of seasonal and regional variability in biogenic VOC emissions on surface ozone in the Pearl River Delta region, China[J]. Atmospheric Chemistry and Physics, 13(23): 11803-11817.
DOI
URL
|
[23] |
SUN Y L, JIANG Q, XU Y S, et al., 2016. Aerosol characterization over the North China Plain: haze life cycle and biomass burning impacts in summer[J]. Journal of Geophysical Research, 121(5): 2508-2521.
|
[24] |
TANG Y X, ZHU L, 2005. Photolysis of butenedial at 193, 248, 280, 308, 351, 400, and 450 nm[J]. Chemical Physics Letters, 409(4-6): 151-156.
DOI
URL
|
[25] |
XU W, XIE C, KARNEZI E, et al., 2019. Summertime aerosol volatility measurements in Beijing, China[J]. Atmospheric Chemistry and Physics, 19(15): 10205-10216.
DOI
URL
|
[26] |
白建辉, 郝楠, 2018. 亚热带森林植物挥发性有机物 (BVOCs) 排放通量与大气甲醛之间的关系[J]. 生态环境学报, 27(6): 991-999.
|
|
BAI J H, HAO N, 2018. The relationships between biogenic volatile organic compound (BVOC) emissions and atmospheric formaldehyde in a subtropicalPinus plantation in China[J]. Ecology and Environmental Sciences.27(6): 991-999.
|
[27] |
白建辉, 王庚辰, 2013. 气温与地表辐射收支的联系: 基于禹城和栾城站点资料的分析[J]. 气象, 39(11): 1437-1444.
|
|
BAI J H, WANG G C, 2013. Correlation between temperature and surface radiation budget: Analysis of observational data from Yucheng and Luancheng stations[J]. Meteorological Monthly, 39(11): 1437-1444.
|
[28] |
雷加富, 2005. 中国森林资源报告[M]. 北京: 中国林业出版社: 171.
|
|
LEI J F, 2005. China Forest Resources Report[M]. Beijing: China Forestry Publishing House: 171.
|