生态环境学报 ›› 2024, Vol. 33 ›› Issue (1): 92-100.DOI: 10.16258/j.cnki.1674-5906.2024.01.010
高尧峰1(), 段艳平1,2,*(
), 陈昱如1, 涂耀仁1,2, 高峻1,2
收稿日期:
2023-08-11
出版日期:
2024-01-18
发布日期:
2024-03-19
通讯作者:
*段艳平。E-mail: duanyanping@shnu.edu.cn作者简介:
高尧峰(1999年生),男,硕士研究生,研究方向新兴污染物的环境行为、风险评价及污染控制。E-mail: yf19912928214@163.com
基金资助:
GAO Yaofeng1(), DUAN Yanping1,2,*(
), CHEN Yuru1, TU Yaoren1,2, GAO Jun1,2
Received:
2023-08-11
Online:
2024-01-18
Published:
2024-03-19
摘要:
抗生素因其潜在的生态和健康风险而引起全球关注。目前,中国长江流域抗生素的人体健康水质基准研究尚处于空白阶段,不利于国家进一步开展抗生素新污染物的管控和风险评估工作。为促进长江流域抗生素污染物的人体健康水质基准研究和人体健康风险评估工作的开展,分别在长江流域宜宾段(上游)、重庆段(上游)、宜昌段(上游)、武汉段(中游)和上海段(下游)采集并分析了表层水样和不同营养级鱼样中氧氟沙星(OFL)和金霉素(CTC)的含量(采样点涉及长江干流、支流、沿江水库以及沿江城镇密集区)。通过分析长江流域OFL和CTC在第2、3、4营养级鱼类的最终营养级生物累积系数(Afi),结合抗生素毒理参数和人群暴露参数,在饮水和消费水产品两种暴露途径下,推导出了长江流域OFL和CTC的人体健康水质基准(AWQC)。结果表明,长江流域水体中OFL和CTC的质量浓度分别为ND-1.55×10−4、ND-4.17×10−4 mg∙L−1,鱼体中OFL和CTC的质量分数分别为ND-4.94×10−2、ND-0.108 mg∙kg−1;OFL在第2、3、4营养级鱼类中的Afi分别为1.40×103、79.0、172 L∙kg−1,CTC在第2、3、4营养级鱼类中的Afi分别为755、9.19×104、744 L∙kg−1;OFL和CTC的AWQC分别为3.04、0.250 μg∙L−1。该结果显示长江流域OFL的人体健康风险暂时处于可接受水平,但长江流域宜宾段局部水体CTC浓度高于推导出的水质基准则表明仍需重点关注长江流域CTC的浓度变化情况及其可能会带来的人体健康风险。研究结果可为科学制定长江流域抗生素的水环境质量标准和评估其人体健康风险提供参考依据。
中图分类号:
高尧峰, 段艳平, 陈昱如, 涂耀仁, 高峻. 长江流域氧氟沙星和金霉素的人体健康水质基准研究[J]. 生态环境学报, 2024, 33(1): 92-100.
GAO Yaofeng, DUAN Yanping, CHEN Yuru, TU Yaoren, GAO Jun. Human Health Ambient Water Quality Criteria of Ofloxacin and Chlortetracycline in the Yangtze River Basin[J]. Ecology and Environment, 2024, 33(1): 92-100.
采样点 | 采样点编号 | 东经(E)/(°) | 北纬(N)/(°) | 采样点地理特征 | 采样点 | 采样点编号 | 东经(E)/(°) | 北纬(N)/(°) | 采样点地理特征 |
---|---|---|---|---|---|---|---|---|---|
宜宾市 | YB1 | 104.591864 | 28.745217 | 宜宾市长江干流 | 武汉市 | WH1 | 114.163593 | 30.400350 | 武汉市长江干流 |
YB2 | 104.608109 | 28.777593 | 岷江支流 | WH2 | 114.149601 | 30.449038 | 东荆河 | ||
YB3 | 104.652194 | 28.765966 | 岷江和长江交汇处 | WH3 | 114.226662 | 30.489634 | 东荆河和长江交汇处 | ||
YB4 | 104.676631 | 28.763931 | 南广河的采样点 | WH4 | 114.240970 | 30.568305 | 汉江 | ||
YB5 | 104.677527 | 28.765262 | 南广河和长江交汇处 | WH5 | 114.295620 | 30.574486 | 汉江和长江交汇处 | ||
YB6 | 104.723091 | 28.785070 | 宜宾市长江干流 | WH6 | 114.350379 | 30.692294 | 朱家河 | ||
重庆市 | CQ1 | 106.497752 | 29.457746 | 重庆市马桑溪 | WH7 | 114.373810 | 30.703797 | 滠水 | |
CQ2 | 106.525258 | 29.465647 | 花溪支流 | WH8 | 114.483282 | 30.676944 | 武汉市长江干流 | ||
CQ3 | 106.534300 | 29.535600 | 城镇密集处 | 上海市 | SH1 | 121.044797 | 31.739021 | 上海市长江干流 | |
CQ4 | 106.550012 | 29.572630 | 嘉陵江 | SH2 | 120.345406 | 31.182703 | 太湖 | ||
CQ5 | 106.583423 | 29.601275 | 重庆市长江干流 | SH3 | 120.945109 | 31.116898 | 上海市青浦区淀山湖 | ||
宜昌市 | YC1 | 110.982041 | 30.838971 | 三峡水库 | SH4 | 121.484623 | 31.245379 | 苏州河 | |
YC2 | 111.266191 | 30.755733 | 葛洲坝水库 | SH5 | 121.497780 | 31.232712 | 黄浦江和苏州河交汇处 | ||
YC3 | 111.270810 | 30.704619 | 宜昌市长江干流 | SH6 | 121.501577 | 31.373207 | 黄浦江和长江交汇处 | ||
YC4 | 111.364693 | 30.634043 | 柏临河 | SH7 | 121.574892 | 31.439502 | 上海市长兴岛长江干流 | ||
YC5 | 110.346852 | 30.624419 | 宜昌市长江干流 | SH8 | 121.725117 | 31.408525 | 青草沙水库和长江交汇处 | ||
SH9 | 121.781531 | 31.367583 | 上海市长兴岛长江干流 |
表1 水样采集信息
Table 1 Information on water sampling sites
采样点 | 采样点编号 | 东经(E)/(°) | 北纬(N)/(°) | 采样点地理特征 | 采样点 | 采样点编号 | 东经(E)/(°) | 北纬(N)/(°) | 采样点地理特征 |
---|---|---|---|---|---|---|---|---|---|
宜宾市 | YB1 | 104.591864 | 28.745217 | 宜宾市长江干流 | 武汉市 | WH1 | 114.163593 | 30.400350 | 武汉市长江干流 |
YB2 | 104.608109 | 28.777593 | 岷江支流 | WH2 | 114.149601 | 30.449038 | 东荆河 | ||
YB3 | 104.652194 | 28.765966 | 岷江和长江交汇处 | WH3 | 114.226662 | 30.489634 | 东荆河和长江交汇处 | ||
YB4 | 104.676631 | 28.763931 | 南广河的采样点 | WH4 | 114.240970 | 30.568305 | 汉江 | ||
YB5 | 104.677527 | 28.765262 | 南广河和长江交汇处 | WH5 | 114.295620 | 30.574486 | 汉江和长江交汇处 | ||
YB6 | 104.723091 | 28.785070 | 宜宾市长江干流 | WH6 | 114.350379 | 30.692294 | 朱家河 | ||
重庆市 | CQ1 | 106.497752 | 29.457746 | 重庆市马桑溪 | WH7 | 114.373810 | 30.703797 | 滠水 | |
CQ2 | 106.525258 | 29.465647 | 花溪支流 | WH8 | 114.483282 | 30.676944 | 武汉市长江干流 | ||
CQ3 | 106.534300 | 29.535600 | 城镇密集处 | 上海市 | SH1 | 121.044797 | 31.739021 | 上海市长江干流 | |
CQ4 | 106.550012 | 29.572630 | 嘉陵江 | SH2 | 120.345406 | 31.182703 | 太湖 | ||
CQ5 | 106.583423 | 29.601275 | 重庆市长江干流 | SH3 | 120.945109 | 31.116898 | 上海市青浦区淀山湖 | ||
宜昌市 | YC1 | 110.982041 | 30.838971 | 三峡水库 | SH4 | 121.484623 | 31.245379 | 苏州河 | |
YC2 | 111.266191 | 30.755733 | 葛洲坝水库 | SH5 | 121.497780 | 31.232712 | 黄浦江和苏州河交汇处 | ||
YC3 | 111.270810 | 30.704619 | 宜昌市长江干流 | SH6 | 121.501577 | 31.373207 | 黄浦江和长江交汇处 | ||
YC4 | 111.364693 | 30.634043 | 柏临河 | SH7 | 121.574892 | 31.439502 | 上海市长兴岛长江干流 | ||
YC5 | 110.346852 | 30.624419 | 宜昌市长江干流 | SH8 | 121.725117 | 31.408525 | 青草沙水库和长江交汇处 | ||
SH9 | 121.781531 | 31.367583 | 上海市长兴岛长江干流 |
鱼类 | 采样点编号 (鱼样编号) | 样品数 | 食性描述 | 营养级 |
---|---|---|---|---|
草鱼 | WHF2 (FWH2、FWH6、FWH7)、WHF5 (FWH8) | 4 | 草食性 | 二级 |
黄尾鲴 | YBF1 (FYB5) | 1 | 草食性 | |
鲤鱼 | SHF1 (FSH5)、SHF2 (FSH9) | 2 | 杂食性 | 三级 |
瓦氏黄颡鱼 | CQF1 (FCQ4、FCQ5)、YCF1 (FYC4、FYC5)、WHF5 (FWH9)、WHF3 (FWH10)、WHF6 (FWH12)、WHF7 (FWH13、FWH15)、WHF2 (FWH14)、SHF1 (FSH3) | 11 | 杂食性 | |
鲢鱼 | YBF1 (FYB2)、WHF1 (FWH1)、WHF3 (FWH3、FWH4、FWH11)、WHF4 (FWH5)、SHF1 (FSH6) | 7 | 杂食性 | |
鲫鱼 | YBF1 (FYB4)、SHF1 (FSH8)、SHF2 (FSH10) | 3 | 杂食性 | |
凤鲚 | SHF3 (FSH11) | 1 | 杂食性 | |
黄鲫 | SHF3 (FSH12) | 1 | 杂食性 | |
鮸鱼 | SHF3 (FSH13) | 1 | 杂食性 | |
棘头梅童鱼 | SHF3 (FSH15) | 1 | 杂食性 | |
刀鲚 | SHF3 (FSH16) | 1 | 杂食性 | |
铜鱼 | YCF1 (FYC1、FYC2、FYC3) | 3 | 杂食性 | |
圆口铜鱼 | CQF1 (FCQ1、FCQ2、FCQ3) | 3 | 杂食性 | |
黑鱼 | SHF1 (FSH7) | 1 | 肉食性 | 四级 |
龙头鱼 | SHF3 (FSH14) | 1 | 肉食性 | |
斑鳜 | YBF1 (FYB7) | 1 | 肉食性 | |
翘嘴鲌 | YBF1 (FYB1、FYB3、FYB6)、CQF1 (FCQ6、FCQ7)、SHF1 (FSH4) | 6 | 肉食性 | |
翘嘴红鲌 | SHF1 (FSH1) | 1 | 肉食性 | |
鲶鱼 | SHF1 (FSH2) | 1 | 肉食性 |
表2 鱼样采集信息
Table 2 Information on fish sample collection
鱼类 | 采样点编号 (鱼样编号) | 样品数 | 食性描述 | 营养级 |
---|---|---|---|---|
草鱼 | WHF2 (FWH2、FWH6、FWH7)、WHF5 (FWH8) | 4 | 草食性 | 二级 |
黄尾鲴 | YBF1 (FYB5) | 1 | 草食性 | |
鲤鱼 | SHF1 (FSH5)、SHF2 (FSH9) | 2 | 杂食性 | 三级 |
瓦氏黄颡鱼 | CQF1 (FCQ4、FCQ5)、YCF1 (FYC4、FYC5)、WHF5 (FWH9)、WHF3 (FWH10)、WHF6 (FWH12)、WHF7 (FWH13、FWH15)、WHF2 (FWH14)、SHF1 (FSH3) | 11 | 杂食性 | |
鲢鱼 | YBF1 (FYB2)、WHF1 (FWH1)、WHF3 (FWH3、FWH4、FWH11)、WHF4 (FWH5)、SHF1 (FSH6) | 7 | 杂食性 | |
鲫鱼 | YBF1 (FYB4)、SHF1 (FSH8)、SHF2 (FSH10) | 3 | 杂食性 | |
凤鲚 | SHF3 (FSH11) | 1 | 杂食性 | |
黄鲫 | SHF3 (FSH12) | 1 | 杂食性 | |
鮸鱼 | SHF3 (FSH13) | 1 | 杂食性 | |
棘头梅童鱼 | SHF3 (FSH15) | 1 | 杂食性 | |
刀鲚 | SHF3 (FSH16) | 1 | 杂食性 | |
铜鱼 | YCF1 (FYC1、FYC2、FYC3) | 3 | 杂食性 | |
圆口铜鱼 | CQF1 (FCQ1、FCQ2、FCQ3) | 3 | 杂食性 | |
黑鱼 | SHF1 (FSH7) | 1 | 肉食性 | 四级 |
龙头鱼 | SHF3 (FSH14) | 1 | 肉食性 | |
斑鳜 | YBF1 (FYB7) | 1 | 肉食性 | |
翘嘴鲌 | YBF1 (FYB1、FYB3、FYB6)、CQF1 (FCQ6、FCQ7)、SHF1 (FSH4) | 6 | 肉食性 | |
翘嘴红鲌 | SHF1 (FSH1) | 1 | 肉食性 | |
鲶鱼 | SHF1 (FSH2) | 1 | 肉食性 |
抗生素 | 母离子质荷比(m/z) | 子离子质荷比(m/z) | 碰撞 能量/V | 水体检出限/ (ng∙L−1) | 鱼体检出限/ (μg∙kg−1) |
---|---|---|---|---|---|
OFL | 362 | 261, 318 | 27, 18 | 0.400 | 1.00 |
CTC | 479 | 444, 462 | 20, 28 | 2.00 | 5.00 |
表3 OFL和CTC的质谱参数及检出限
Table 3 Mass spectrometry parameters and detection limits for OFL and CTC
抗生素 | 母离子质荷比(m/z) | 子离子质荷比(m/z) | 碰撞 能量/V | 水体检出限/ (ng∙L−1) | 鱼体检出限/ (μg∙kg−1) |
---|---|---|---|---|---|
OFL | 362 | 261, 318 | 27, 18 | 0.400 | 1.00 |
CTC | 479 | 444, 462 | 20, 28 | 2.00 | 5.00 |
水系 | OFL | CTC | |||||
---|---|---|---|---|---|---|---|
质量浓度范围/(mg∙L−1) | 质量浓度均值/(mg∙L−1) | 参考文献 | 质量浓度范围/(mg∙L−1) | 质量浓度均值/(mg∙L−1) | 参考文献 | ||
长江 | ND-1.55×10−4 | 2.99×10−6 | 本研究 | ND-4.17×10−4 | 1.92×10−5 | 本研究 | |
珠江 | 0.800×10−6-1.95×10−4 | 3.87×10−5 | Li et al., | ‒ | ‒ | ‒ | |
海河 | ND-1.70×104 | 3.47×10−5 | Li et al., | ND-6.89×10−2 | 7.71×10−3 | Chen et al., | |
辽河 | ND-2.72×10−5 | 3.68×10−6 | Gao et al., | ND-5.19×10−5 | 3.20×10−6 | Gao et al., | |
黄河 | ND-2.64×10−4 | 9.23×10−5 | Xu et al., | ND-4.20×10−6 | 4.00×10−6 | LÜ et al., | |
松花江 | ND-1.65×10−4 | 3.68×10−6 | Li et al., | ‒ | ‒ | ‒ | |
淮河 | ‒ | ‒ | ‒ | ND-1.93×10−5 | 1.15×10−6 | 席楠楠等, |
表4 长江流域和其他水系OFL和CTC的质量浓度水平
Table 4 Mass concentration levels of OFL and CTC in the Yangtze River basin and other river systems
水系 | OFL | CTC | |||||
---|---|---|---|---|---|---|---|
质量浓度范围/(mg∙L−1) | 质量浓度均值/(mg∙L−1) | 参考文献 | 质量浓度范围/(mg∙L−1) | 质量浓度均值/(mg∙L−1) | 参考文献 | ||
长江 | ND-1.55×10−4 | 2.99×10−6 | 本研究 | ND-4.17×10−4 | 1.92×10−5 | 本研究 | |
珠江 | 0.800×10−6-1.95×10−4 | 3.87×10−5 | Li et al., | ‒ | ‒ | ‒ | |
海河 | ND-1.70×104 | 3.47×10−5 | Li et al., | ND-6.89×10−2 | 7.71×10−3 | Chen et al., | |
辽河 | ND-2.72×10−5 | 3.68×10−6 | Gao et al., | ND-5.19×10−5 | 3.20×10−6 | Gao et al., | |
黄河 | ND-2.64×10−4 | 9.23×10−5 | Xu et al., | ND-4.20×10−6 | 4.00×10−6 | LÜ et al., | |
松花江 | ND-1.65×10−4 | 3.68×10−6 | Li et al., | ‒ | ‒ | ‒ | |
淮河 | ‒ | ‒ | ‒ | ND-1.93×10−5 | 1.15×10−6 | 席楠楠等, |
抗生素 | 营养级 | 鱼种类 | Aa/ (L∙kg-1) | As/ (L∙kg-1) | Abi/ (L∙kg-1) | Afi/ (L∙kg-1) |
---|---|---|---|---|---|---|
OFL | 二级 | 草鱼 | 2.67×103 | 1.0×105 | 5.68×104 | 1.40×103 |
黄尾鲴 | 142 | 5.68×103 | ||||
三级 | 鲢鱼 | 75.0 | 2.39×103 | 2.53×103 | 79.0 | |
瓦氏黄颡鱼 | 20.0 | 627 | ||||
鲫鱼 | 142 | 4.57×103 | ||||
四级 | 斑鳜 | 172 | 5.40×103 | 5.40×103 | 132 | |
CTC | 二级 | 黄尾鲴 | 755 | 3.05×104 | 3.05×104 | 755 |
三级 | 铜鱼 | 2.32×105 | 7.52×106 | 2.98×106 | 9.19×104 | |
瓦氏黄颡鱼 | 4.35×104 | 1.41×106 | ||||
鲫鱼 | 538 | 1.74×104 | ||||
四级 | 翘嘴鲌 | 460 | 1.45×104 | 2.35×104 | 744 | |
斑鳜 | 1.03×103 | 3.25×104 |
表5 生物累积系数计算结果
Table 5 Calculation of bioaccumulation factor
抗生素 | 营养级 | 鱼种类 | Aa/ (L∙kg-1) | As/ (L∙kg-1) | Abi/ (L∙kg-1) | Afi/ (L∙kg-1) |
---|---|---|---|---|---|---|
OFL | 二级 | 草鱼 | 2.67×103 | 1.0×105 | 5.68×104 | 1.40×103 |
黄尾鲴 | 142 | 5.68×103 | ||||
三级 | 鲢鱼 | 75.0 | 2.39×103 | 2.53×103 | 79.0 | |
瓦氏黄颡鱼 | 20.0 | 627 | ||||
鲫鱼 | 142 | 4.57×103 | ||||
四级 | 斑鳜 | 172 | 5.40×103 | 5.40×103 | 132 | |
CTC | 二级 | 黄尾鲴 | 755 | 3.05×104 | 3.05×104 | 755 |
三级 | 铜鱼 | 2.32×105 | 7.52×106 | 2.98×106 | 9.19×104 | |
瓦氏黄颡鱼 | 4.35×104 | 1.41×106 | ||||
鲫鱼 | 538 | 1.74×104 | ||||
四级 | 翘嘴鲌 | 460 | 1.45×104 | 2.35×104 | 744 | |
斑鳜 | 1.03×103 | 3.25×104 |
抗生素 | 参考剂量RRfD/(mg∙kg−1∙d−1) | 人均体重BBW/(kg) | 人均饮水量DDI/(L∙d−1) | 各营养级水产品摄入量 Fi (i=2, 3, 4)/(kg∙d−1) | 最终营养级生物积累因子 Afi (i=2, 3, 4)/(L∙kg−1) | CAWQC/ (μg∙L−1) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F2 | F3 | F4 | Af2 | Af3 | Af4 | ||||||
OFL | 5.00×10−3 | 60.6 | 1.85 | 1.182×10−2 | 1.606×10−2 | 1.27×10−3 | 1.40×103 | 79.0 | 172 | 3.04 | |
CTC | 3.00×10−2 | 755 | 9.19×104 | 744 | 0.250 |
表6 长江流域OFL和CTC人体健康水质基准
Table 6 The AWQC values for OFL and CTC in the Yangtze River basin
抗生素 | 参考剂量RRfD/(mg∙kg−1∙d−1) | 人均体重BBW/(kg) | 人均饮水量DDI/(L∙d−1) | 各营养级水产品摄入量 Fi (i=2, 3, 4)/(kg∙d−1) | 最终营养级生物积累因子 Afi (i=2, 3, 4)/(L∙kg−1) | CAWQC/ (μg∙L−1) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F2 | F3 | F4 | Af2 | Af3 | Af4 | ||||||
OFL | 5.00×10−3 | 60.6 | 1.85 | 1.182×10−2 | 1.606×10−2 | 1.27×10−3 | 1.40×103 | 79.0 | 172 | 3.04 | |
CTC | 3.00×10−2 | 755 | 9.19×104 | 744 | 0.250 |
[1] | AN W, HU J Y, WAN Y, et al., 2006. Deriving site-specific 2,2-bis(chlorophenyl)-1,1-dichloroethylene quality criteria of water and sediment for protection of common tern populations in Bohai Bay, North China[J]. Environmental Science & Technology, 40(8): 2511-2516. |
[2] | BELL C, WILLIAMSON J, BEATTY J, et al., 2008. Australian Guidelines for Water Recycling Augmentation of Drinking Water Supplies[M]. Australia: Natural Resource Management Ministerial Council and Environment Protection and Heritage Council and National Health and Medical Research Councl: 34-35. |
[3] | BEIRAS R, SCHNEMANN A M, 2020. Water quality criteria for selected pharmaceuticals and personal care products for the protection of marine ecosystems[J]. Science of The Total Environment, 758: 143589. |
[4] | CHEN H Y, JING L J, TENG Y G, et al., 2018. Characterization of antibiotics in a large-scale river system of China: Occurrence pattern, spatiotemporal distribution and environmental risks[J]. Science of the Total Environment, 618: 409-418. |
[5] | FARZANA S, RUAN Y, WANG Q, et al., 2020. Developing interim water quality criteria for emerging chemicals of concern for protecting marine life in the Greater Bay Area of South China[J]. Marine Pollution Bulletin, 161(Part B): 111792. |
[6] | GUO Q Z, DU Z X, SHAO B, 2018. Simulation and experimental study on the mechanism of the chlorination of azithromycin[J]. Journal of Hazardous Materials, 359: 31-39. |
[7] | GAO H, ZHAO F Q, LI R J, et al., 2022. Occurrence and distribution of antibiotics and antibiotic resistance genes in water of Liaohe River basin, China[J]. Journal of Environmental Chemical Engineering, 10(5): 108297. |
[8] | HUANG F Y, AN Z Y, MORAN M J, et al., 2020. Recognition of typical antibiotic residues in environmental media related to groundwater in China (2009-2019)[J]. Journal of Hazardous Materials, 399: 122813. |
[9] | KARAMPELA I, DALAMAGA M, 2020. Could respiratory fluoroquinolones, levofloxacin and moxifloxacin, prove to be beneficial as an adjunct treatment in COVID-19?[J]. Archives of Medical Research, 51(7): 741-742. |
[10] | KATIE T, LAURA H, MARIUS G, et al., 2020. Global Trends in Antimicrobial Use in Food Animals from 2017 to 2030[J]. Antibiotics (Basel, Switzerland) 9(12): 918. |
[11] | LORENZO P, ADRIANA A, JESSICA S, et al., 2018. Antibiotic resistance in urban and hospital wastewaters and their impact on a receiving freshwater ecosystem[J]. Chemosphere, 206: 70-82. |
[12] | LI Y, DING J, ZHANG L Y, et al., 2019. Occurrence and ranking of pharmaceuticals in the major rivers of China[J]. Science of the Total Environment, 696: 133991. |
[13] | LI S, SHI W Z, LI H M, et al., 2018. Antibiotics in water and sediments of rivers and coastal area of Zhuhai City, Pearl River estuary, south China[J]. Science of the Total Environment, 636: 1009-1019. |
[14] | LÜ D Y, YU C, ZHUO Z J, et al., 2022. The distribution and ecological risks of antibiotics in surface water in key cities along the lower reaches of the Yellow River: A case study of Kaifeng City, China[J]. China Geology, 5(3): 411-420. |
[15] | LIU D, BAI Y, HE X Q, et al., 2019. Satellite-derived particulate organic carbon flux in the Changjiang River through different stages of the Three Gorges Dam[J]. Remote Sensing of Environment, 223: 154-165. |
[16] | National Center for Biotechnology Information, PubChem Compound Summary for CID 4583, Ofloxacin[EB/OL]. [2023-08-01]. https://pubchem.ncbi.nlm.nih.gov/compound/Ofloxacin. |
[17] | STRENGE D L, PETERSON S R, 1989. Chemical data bases for the Multimedia Environmental Pollutant Assessment System (MEPAS): Version 1[M]. Washington: Pacific Northwest National Laboratory: 40-41. |
[18] | SHI J Y, DONG Y B, SHI Y Y, et al., 2022. Groundwater antibiotics and microplastics in a drinking-water source area, northern China: Occurrence, spatial distribution, risk assessment, and correlation[J]. Environmental Research, 210: 112855. |
[19] | SILORI R, SHRIVASTAVA V, SINGH A, et al., 2022. Global groundwater vulnerability for Pharmaceutical and Personal care products (PPCPs): The scenario of second decade of 21st century[J]. Journal of Environmental Management, 320: 115703. |
[20] | WANG J, YAN Z G, ZHENG X, et al., 2021. Health risk assessment and development of human health ambient water quality criteria for PBDEs in China[J]. Science of the Total Environment, 799: 149353. |
[21] | WANG X L, ZHANG X, ZHAO X L, et al., 2022. Using a probabilistic model and local parameters to improve the reliability of ambient water quality criteria for the protection of human health: a case study of organophosphate esters in China[J]. ACS ES&T Water, 2(2): 309-319. |
[22] | WANG Y Y, DONG X L, ZANG J X, et al., 2023. Antibiotic residues of drinking-water and its human exposure risk assessment in rural Eastern China[J]. Water Research, 236: 119940. |
[23] | XU W H, ZHANG G, ZOU S C, et al., 2009. A preliminary investigation on the occurrence and distribution of antibiotics in the Yellow River and its tributaries, China[J]. Water environment research: A research publication of the Water Environment Federation, 81(3): 248-254. |
[24] | YANG Y Y, ZHAO J L, LIU Y S, et al., 2018. Pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) in surface and ground waters and their application as indication of wastewater contamination[J]. Science of the Total Environment, 616-617: 816-823. |
[25] | 陈昱如, 段艳平, 张智博, 等, 2023. 长江经济带水环境中抗生素人体健康风险评价[J]. 中国环境科学, 43(7): 3713-3729. |
CHEN Y R, DUAN Y P, ZHANG Z B, et al., 2023. Human health risk assessment of antibiotics in the water environment of the Yangtze River Economic Zone[J]. China Environmental Science, 43(7): 3713-3729. | |
[26] | 董素涵, 刘萌硕, 蔡闻琪, 等, 2023. 磺胺甲噁唑淡水水生生物水质基准与生态风险评估[J]. 环境科学学报, 43(5): 496-504. |
DONG S H, LIU M S, CAI W Q, et al., 2023. Water quality benchmarks and ecological risk assessment of sulfamethoxazole for freshwater aquatic organisms[J]. Journal of Environmental Science, 43(5): 496-504. | |
[27] | 国家市场监督管理总局, 2022. 生活饮用水卫生标准: GB 5749—2022[S]. 北京: 中国标准出版社: 3-9. |
State Administration for Market Supervision and Regulation, 2022. Standards for drinking water quality: GB 5749—2022[S]. Beijing: China Standard Press: 3-9. | |
[28] | 环境保护部, 2017. 人体健康水质基准制定技术指南: HJ 837—2017[S]. 北京: 中国标准出版社: 6-21. |
Ministry of Environmental Protection, 2017. Technical guideline for deriving water quality criteria for the protection of human health: HJ 837—2017[S]. Beijing: Standards Press of China: 6-21. | |
[29] | 林颖, 高俊敏, 郭劲松, 等, 2023. 基于物种敏感度分布的典型抗生素的长期水质基准推导及其在生态风险评估中的应用[J]. 环境科学学报, 43(3): 503-515. |
LIN Y, GAO J M, GUO J S, et al., 2023. Derivation of long-term water quality benchmarks for typical antibiotics based on species sensitivity distributions and their application to ecological risk assessment[J]. Journal of Environmental Science, 43(3): 503-515. | |
[30] | 王晓南, 崔亮, 李霁, 等, 2021. 人体健康水质基准特征参数研究及应用[J]. 环境科学研究, 34(7): 1553-1561. |
WANG X N, CUI L, LI J, et al., 2021. Characterization of human health water quality benchmarks and their application[J]. Environmental Science Research, 34(07): 1553-1561. | |
[31] | 席楠楠, 2017. 黄、淮河河南段水环境中典型药物、防腐剂的残留及污染特征[D]. 郑州: 河南师范大学: 30-33. |
XI N N, 2017. Residues and pollution characteristics of typical drugs and preservatives in the water environment of the Henan section of the Yellow and Huai Rivers[D]. Henan Normal University: 30-33. | |
[32] | 中华人民共和国农业农村部, 2021. 食品安全国家标准水产品中诺氟沙星、环丙沙星、恩诺沙星、氧氟沙星、噁喹酸、氟甲喹残留量的测定高效液相色谱法: GB 31656.3—2021[S]. 北京: 中国农业出版社: 2-3. |
Ministry of Agriculture and Rural Development of The People's Republic of China, 2021. National food safety standards Determination of norfloxacin, ciprofloxacin, enrofloxacin, ofloxacin, oxolinic acid and flumequine residues in fishery products by high performance liquid chromatography: GB 31656.3—2021[S]. Beijing: China Agricultural Press: 2-3. | |
[33] | 中华人民共和国农业农村部, 2021. 食品安全国家标准水产品中土霉素、四环素、金霉素、多西环素残留量的测定: GB 31656.11—2021[S]. 北京: 中国农业出版社: 1-3. |
Ministry of Agriculture and Rural Development of The People's Republic of China, 2021. National food safety standards Determination of oxytetracycline, tetracycline, chlortetracycline and doxycycline residues in aquatic products: GB 31656.11—2021[S]. Beijing: China Agricultural Press: 1-3. | |
[34] | 中华人民共和国农业农村部, 2019. 食品安全国家标准食品中种兽药最大残留限量: GB 31650—2019[S]. 北京: 中国农业出版社: 29. |
Ministry of Agriculture and Rural Development of the People's Republic of China, 2019. National food safety standard Maximum residue limits for veterinary drugs in food: GB 31650—2019[S]. Beijing: China Agricultural Press: 29. | |
[35] | 中华人民共和国农业农村部, 2022. 食品安全国家标准食品中41种兽药最大残留限量: GB 31650.1—2022[S]. 北京: 中国农业出版社: 8. |
MInistry of Agriculture and Rural Development of The People's Republic of China, 2022. National Standard for Food Safety: Maximum Residue Limits for 41 Veterinary Drugs in Food: GB 31650. 1—2022[S]. Beijing: China Agricultural Press: 8. | |
[36] | 张姚姚, 杨再福, 汪涛, 等, 2018. 地表水中氟喹诺酮类抗生素的生态风险评价与水质基准研究[J]. 环境与健康杂志, 35(6): 531-535. |
ZHANG Y Y, YANG Z F, WANG T, et al., 2018. Ecological risk assessment and water quality benchmarking of fluoroquinolone antibiotics in surface water[J]. Journal of Environment and Health, 35(6): 531-535. |
[1] | 陈敏毅, 朱航海, 佘伟铎, 尹光彩, 黄祖照, 杨巧玲. 珠三角某遗留造船厂场地土壤重金属人体健康风险评估及源解析[J]. 生态环境学报, 2023, 32(4): 794-804. |
[2] | 刘宁, 孔宇, 任春廷, 潘超, 李晓娜, 王震宇. 废碳粉中新污染物的环境健康风险与资源化利用[J]. 生态环境学报, 2023, 32(12): 2128-2140. |
[3] | 李姝亭, 胡冠九, 罗小三. 大气环境中全(多)氟烷基化合物(PFASs)的来源、分布及健康风险研究进展[J]. 生态环境学报, 2023, 32(12): 2103-2114. |
[4] | 李秀华, 赵玲, 滕应, 骆永明, 黄标, 刘冲, 刘本乐, 赵其国. 贵州汞矿区周边农田土壤汞镉复合污染特征空间分布及风险评估[J]. 生态环境学报, 2022, 31(8): 1629-1636. |
[5] | 苏海磊, 李信茹, 陶艳茹, 时迪, 魏源, 沈亚琴, 陈艳卿, 孙福红. 美国水质标准制定研究及其对中国的借鉴意义[J]. 生态环境学报, 2021, 30(11): 2267-2274. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||