生态环境学报 ›› 2024, Vol. 33 ›› Issue (1): 80-91.DOI: 10.16258/j.cnki.1674-5906.2024.01.009
收稿日期:
2023-07-03
出版日期:
2024-01-18
发布日期:
2024-03-19
通讯作者:
*张小玲。E-mail: xlzhang@ium.cn作者简介:
王传扬(2000年生),男,硕士研究生,研究方向为大气环境。E-mail: 18061171646@163.com
基金资助:
WANG Chuanyang1(), ZHANG Xiaoling1,2,*(
), LAN Linhui1, PAN Jie1
Received:
2023-07-03
Online:
2024-01-18
Published:
2024-03-19
摘要:
2022年夏季高温干旱严重影响中国长江流域,臭氧(O3)等污染物也出现明显异常,为研究高温干旱对污染物的影响,利用2015-2022年夏季逐小时地面空气质量和气象监测数据以及气象再分析资料,分析了夏季高温干旱特征以及对O3和细颗粒物(PM2.5)浓度的影响。结果表明:2022年夏季受高原暖高压和西太平洋副热带高压西伸北抬的影响,中国长江流域出现极端高温干旱天气事件,持续时间长,影响范围广,其中四川盆地和长三角地区地面温度明显偏高,相对湿度和降水量偏低,对近地面O3和PM2.5浓度造成了一定的影响。7-8月高温干旱对四川盆地产生的影响尤其严重。异常的高温干旱增强了大气光化学反应能力,对O3和二次气溶胶生成有贡献,且降水对污染物的湿清除作用大大减弱,导致四川盆地O3浓度和超标天数明显增加,PM2.5浓度也有所升高,甚至造成持续十多天的高温热浪和O3污染复合事件,其中对成都平原O3污染的影响最为显著,其次为川南城市群。成都平原和川南城市群O3超标天数分别为22 d和17 d;成都平原高温日数和O3超标天数分别比2021年增加了约250%和120%。除高温热浪的影响外,高原地形阻挡以及风的垂直输送也是四川盆地O3污染形成的重要原因之一。
中图分类号:
王传扬, 张小玲, 兰琳惠, 潘婕. 2022年夏季高温干旱对四川盆地污染物浓度变化的影响分析[J]. 生态环境学报, 2024, 33(1): 80-91.
WANG Chuanyang, ZHANG Xiaoling, LAN Linhui, PAN Jie. Analysis of the Impact of High Temperature and Drought on the Concentration Changes of Pollutants in the Sichuan Basin in Summer of 2022[J]. Ecology and Environment, 2024, 33(1): 80-91.
图2 2022年夏季各月地面气象要素与2021年同期的差值 中国地图依据自然资源部标准底图(审图号:GS (2019) 1697号)绘制而成
Figure 2 Difference between surface meteorological elements in the summer of 2022 and the same period in 2021
图4 2022年夏季各月川渝地区地面气象要素与2015-2021年同期平均值的距平空间分布
Figure 4 The spatial distribution of surface meteorological elements in the Sichuan andChongqing region during the summer of 2022 and the average values of the same period from 2015 to 2021
图5 2022年川渝地区夏季各月O3质量浓度与2015-2021年同期平均值的距平分布
Figure 5 Anomalous distribution of O3 concentration in the summer months of 2022 in the Sichuan and Chongqing region compared to the average value of the same period from 2015 to 2021
城市 | 年份 | |||||||
---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | |
重庆 | 88.09(3) | 101.53(6) | 112.83(26) | 125.30(24) | 113.54(18) | 102.07(11) | 98.31(10) | 112.92(4) |
成都 | 130.68(32) | 139.06(29) | 135.39(27) | 123.25(19) | 118.83(17) | 121.89(21) | 120.57(16) | 146.32(40) |
绵阳 | 99.11(5) | 103.66(6) | 101.38(0) | 108.35(5) | 104.28(8) | 102.37(4) | 108.23(9) | 128.83(18) |
德阳 | 114.23(10) | 125.84(20) | 128.30(20) | 112.11(11) | 109.55(13) | 114.89(14) | 117.23(11) | 136.80(28) |
遂宁 | 106.73(8) | 130.76(16) | 123.82(13) | 111.93(9) | 99.82(7) | 97.37(2) | 99.36(8) | 121.55(7) |
眉山 | 125.18(15) | 123.08(9) | 131.53(12) | 123.48(13) | 121.22(15) | 114.32(10) | 119.62(13) | 143.33(34) |
雅安 | 56.91(0) | 98.14(1) | 107.76(5) | 97.58(0) | 98.88(5) | 94.38(0) | 95.89(4) | 116.00(8) |
资阳 | 118.31(12) | 121.88(13) | 119.32(5) | 115.25(11) | 107.14(11) | 107.90(6) | 107.49(8) | 134.49(16) |
乐山 | 106.10(2) | 116.51(8) | 126.10(10) | 90.47(1) | 103.60(8) | 104.52(5) | 113.76(7) | 132.04(22) |
泸州 | 84.23(1) | 117.93(14) | 113.93(10) | 116.32(11) | 107.27(13) | 106.84(5) | 108.85(8) | 121.51(15) |
自贡 | 101.15 (0) | 84.87(0) | 118.35(18) | 127.77(19) | 112.60(13) | 110.38(6) | 114.42(10) | 128.59(16) |
内江 | 118.34 (13) | 125.35(12) | 126.98(13) | 115.80(11) | 100.39(9) | 101.89(5) | 107.14(10) | 128.37(18) |
宜宾 | 99.75(1) | 108.56(5) | 117.37(6) | 113.95(11) | 109.85(10) | 106.16(5) | 109.09(7) | 128.00(20) |
南充 | 85.47(7) | 89.82(0) | 121.58(11) | 111.83(6) | 92.92(1) | 78.46(0) | 85.75(0) | 109.69(0) |
广元 | 105.45(4) | 104.10(2) | 98.75(0) | 91.53(1) | 76.93(0) | 83.96(0) | 88.41(4) | 103.57(0) |
广安 | 118.29(15) | 118.53(10) | 115.74(6) | 116.35(11) | 103.76(9) | 100.53(3) | 102.00(8) | 121.54(6) |
达州 | 89.65(2) | 89.32(0) | 95.66(1) | 123.11(9) | 93.93(3) | 77.98(0) | 76.83(2) | 96.80(2) |
巴中 | 98.12(1) | 67.63(0) | 93.52(0) | 89.96(1) | 79.47(0) | 75.49(0) | 79.94(0) | 100.64(0) |
平均 | 102.54(7) | 109.25(8) | 116.59(10) | 111.91(10) | 103.00(9) | 100.08(5) | 102.94(7) | 122.83(14) |
表1 四川盆地18个城市2015-2022年夏季O3质量浓度和O3超标天数统计
Table 1 Statistics on O3 concentration and O3 exceeding days in 18 cities in the Sichuan Basin during the summer from 2015 to 2022 μg·m?3·d?1
城市 | 年份 | |||||||
---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | |
重庆 | 88.09(3) | 101.53(6) | 112.83(26) | 125.30(24) | 113.54(18) | 102.07(11) | 98.31(10) | 112.92(4) |
成都 | 130.68(32) | 139.06(29) | 135.39(27) | 123.25(19) | 118.83(17) | 121.89(21) | 120.57(16) | 146.32(40) |
绵阳 | 99.11(5) | 103.66(6) | 101.38(0) | 108.35(5) | 104.28(8) | 102.37(4) | 108.23(9) | 128.83(18) |
德阳 | 114.23(10) | 125.84(20) | 128.30(20) | 112.11(11) | 109.55(13) | 114.89(14) | 117.23(11) | 136.80(28) |
遂宁 | 106.73(8) | 130.76(16) | 123.82(13) | 111.93(9) | 99.82(7) | 97.37(2) | 99.36(8) | 121.55(7) |
眉山 | 125.18(15) | 123.08(9) | 131.53(12) | 123.48(13) | 121.22(15) | 114.32(10) | 119.62(13) | 143.33(34) |
雅安 | 56.91(0) | 98.14(1) | 107.76(5) | 97.58(0) | 98.88(5) | 94.38(0) | 95.89(4) | 116.00(8) |
资阳 | 118.31(12) | 121.88(13) | 119.32(5) | 115.25(11) | 107.14(11) | 107.90(6) | 107.49(8) | 134.49(16) |
乐山 | 106.10(2) | 116.51(8) | 126.10(10) | 90.47(1) | 103.60(8) | 104.52(5) | 113.76(7) | 132.04(22) |
泸州 | 84.23(1) | 117.93(14) | 113.93(10) | 116.32(11) | 107.27(13) | 106.84(5) | 108.85(8) | 121.51(15) |
自贡 | 101.15 (0) | 84.87(0) | 118.35(18) | 127.77(19) | 112.60(13) | 110.38(6) | 114.42(10) | 128.59(16) |
内江 | 118.34 (13) | 125.35(12) | 126.98(13) | 115.80(11) | 100.39(9) | 101.89(5) | 107.14(10) | 128.37(18) |
宜宾 | 99.75(1) | 108.56(5) | 117.37(6) | 113.95(11) | 109.85(10) | 106.16(5) | 109.09(7) | 128.00(20) |
南充 | 85.47(7) | 89.82(0) | 121.58(11) | 111.83(6) | 92.92(1) | 78.46(0) | 85.75(0) | 109.69(0) |
广元 | 105.45(4) | 104.10(2) | 98.75(0) | 91.53(1) | 76.93(0) | 83.96(0) | 88.41(4) | 103.57(0) |
广安 | 118.29(15) | 118.53(10) | 115.74(6) | 116.35(11) | 103.76(9) | 100.53(3) | 102.00(8) | 121.54(6) |
达州 | 89.65(2) | 89.32(0) | 95.66(1) | 123.11(9) | 93.93(3) | 77.98(0) | 76.83(2) | 96.80(2) |
巴中 | 98.12(1) | 67.63(0) | 93.52(0) | 89.96(1) | 79.47(0) | 75.49(0) | 79.94(0) | 100.64(0) |
平均 | 102.54(7) | 109.25(8) | 116.59(10) | 111.91(10) | 103.00(9) | 100.08(5) | 102.94(7) | 122.83(14) |
图7 四川盆地2022年6-8月与2015-2021年同期平均的逐日O3-8h质量浓度距平和气温距平
Figure 7 Daily O3-8h concentration and temperature anomaly in the Sichuan Basin from June to August in 2022 compared to the same period average from 2015 to 2021
图8 2022年夏季四川盆地O3质量浓度与温度、相对湿度的关系
Figure 8 Relationship between O3 concentration, temperature and relative humidity in the Sichuan Basin in summer of 2022
图9 2022年7月和8月平均温度和u、w合成风通过30.75°N的垂直剖面 黑色阴影为地形高度,箭头为u与w的合成矢量(其中,w放大了30倍)
Figure 9 Vertical section of the average temperature and combined wind of u and w along 30.75°N in July and August of 2022
图10 2015-2022年四川盆地两大城市群6-8月逐月降水量和夏季总降水日数
Figure 10 Monthly precipitation in June, July, August and total rainfall days in summer in the two urban agglomerations of Sichuan Basin from 2015 to 2022
图11 2015-2022年四川盆地两大城市群夏季逐月O3质量浓度和夏季高温日数与O3超标日数
Figure 11 The monthly O3 concentration and the number of days with excessive O3 concentration and high temperature in the summer of the two urban agglomerationsfrom 2015 to 2022
[1] | HAN H, LIU J, SHU L, et al., 2020. Local and synoptic meteorological influences on daily variability in summertime surface ozone in eastern China[J]. Atmospheric Chemistry and Physics, 20(1): 203-222. |
[2] | JIANG Z J, LI J, LU X, et al., 2021. Impact of western pacific subtropical high on ozone pollution over eastern China[J]. Atmospheric Chemistry and Physics, 21(4): 2601-2613. |
[3] |
LEI Y, WU K, ZHANG X L, et al., 2023. Role of meteorology-driven regional transport on O3 pollution over the Chengdu Plain, southwestern China[J]. Atmospheric Research, 285: 106619.
DOI URL |
[4] | LI J Y, GAO W K, CAO L M, et al., 2021. Significant changes in autumn and winter aerosol composition and sources in Beijing from 2012 to 2018: Effects of clean airactions[J]. Environmental Pollution, 268(Part B): 115855. |
[5] | NING G C, WARDLE D A, YIM S H L, 2022. Suppression of ozone formation at high temperature in China: From historical observations to future projections[J]. Geophysical Research Letters, 49(4): e2021GL097090. |
[6] | SUN Y W, YIN H, LU X, et al., 2021. The drivers and health risks of unexpected surface ozone enhancements over the Sichuan Basin, China, in 2020[J]. Atmospheric Chemistry and Physics, 21(24): 18589-18608. |
[7] |
XIANG X, SHI G M, WU X D, et al., 2022. The extraordinary trend of the spatial distribution of PM2.5 concentration and its meteorological causes in Sichuan Basin[J]. Atmosphere, 13(6): 853.
DOI URL |
[8] |
WANG R Y, YANG X Y, WU K, et al., 2022. Long-term trends of ozone and precursors from 2013 to 2020 in a megacity (Chengdu), China: Evidence of changing emissions and chemistry[J]. Atmospheric Research, 278(11): 106309.
DOI URL |
[9] |
WANG T, XUE L K, FENG ZZ, et al., 2022. Ground-level ozone pollution in China: A synthesis of recent findings on influencing factors and impacts[J]. Environmental Research Letters, 17(6): 063003.
DOI |
[10] |
WANG Z Q, LUO H L, YANG S, 2023. Different mechanisms for the extremely hot central-eastern China in July-August 2022 from a Eurasian large-scale circulation perspective[J]. Environmental Research Letters, 18(2): 024023.
DOI |
[11] |
WU K, WANG Y R, QIAO Y H, et al., 2022. Drivers of 2013-2020 ozone trends in the Sichuan Basin, China: Impacts of meteorology and precursor emission changes[J]. Environmental Pollution, 300: 118914.
DOI URL |
[12] |
YANG X Y, YANG T, LU Y Q, et al., 2022. Assessment of summertime ozone formation in the Sichuan Basin, southwestern China[J]. Frontiers in Ecology and Evolution, 10:931662.
DOI URL |
[13] |
ZHENG H, KONG S F, HE Y, et al., 2023. Enhanced ozone pollution in the summer of 2022 in China: The roles of meteorology and emission variations[J]. Atmospheric Environment, 301: 119701.
DOI URL |
[14] |
付桂琴, 张杏敏, 尤凤春, 等, 2016. 气象条件对石家庄PM2.5浓度的影响分析[J]. 干旱气象, 34(2): 349-355.
DOI |
FU G Q, ZHANG X M, YOU F C, et al., 2016. Analysis of the influence of meteorological conditions on PM2.5 concentration in Shijiazhuang[J]. Journal of Arid Meteorology, 34(2): 349-355. | |
[15] | 环境保护部, 国家质量监督检验检疫总局, 2012. 环境空气质量标准: GB 3095—2012[S]. 北京: 中国环境科学出版社. |
Ministry of environmental protection, General administration of quality supervision, inspection and quarantine, 2012. Ambient air quality standards: GB 3095—2012[S]. Beijing: China Environmental Press. | |
[16] | 环境保护部, 2013. 环境空气质量评价技术规范(试行): HJ 663—2013[S]. 北京: 中国环境科学出版社. |
Ministry of environmental protection, 2013. Technical regulation for ambient air quality assessment (on trial): HJ 663—2013[S]. Beijing: China Environmental Press. | |
[17] | 黄俊, 廖碧婷, 吴兑, 等, 2018. 广州近地面臭氧浓度特征及气象影响分析[J]. 环境科学学报, 38(1): 23-31. |
HUANG J, LIAO B T, WU D, et al., 2018. Guangzhou ground level ozone concentration characteristics and associated meteorological factors[J]. Acta Scientiae Circumstantiae, 38(1): 23-31. | |
[18] |
李忆平, 张金玉, 岳平, 等, 2022. 2022年夏季长江流域重大干旱特征及其成因研究[J]. 干旱气象, 40(5): 733-747.
DOI |
LI Y P, ZHANG J Y, YUE P, et al., 2022. Study on characteristics of severe drought event over Yangtze River Basin in summer of 2022 and its causes[J]. Journal of Arid Meteorology, 40(5): 733-747. | |
[19] |
林纾, 李红英, 黄鹏程, 等, 2022. 2022年夏季我国高温干旱特征及其环流形势分析[J]. 干旱气象, 40(5): 748-763.
DOI |
LIN S, LI H Y, HUANG P C, et al., 2022. Characteristics of high temperature, drought and circulation situation in summer 2022 in China[J]. Journal of Arid Meteorology, 40(5): 748-763. | |
[20] |
林昕, 段焜瑀, 郭弘, 等, 2023. 极端高温形势下福州市臭氧浓度异常升高及影响因素分析[J]. 生态环境学报, 32(2): 320-330.
DOI |
LIN X, DUAN K Y, GUO H, et al., 2023. The causes of the abnormal increase of ozone in Fuzhou city under extreme high temperature[J]. Ecology and Environmental Sciences, 32(2): 320-330. | |
[21] | 刘建, 吴兑, 范绍佳, 等, 2017. 前体物与气象因子对珠江三角洲臭氧污染的影响[J]. 中国环境科学, 37(3): 813-820. |
LIU J, WU D, FAN S J, et al., 2017. Impacts of precursors and meteorological factors on ozone pollution in Pearl River Delta[J]. China Environmental Science, 37(3): 813-820. | |
[22] |
卢宁生, 张小玲, 杜云松, 等, 2023. 成都平原城市群夏季臭氧污染天气形势与潜在源分析[J]. 高原气象, 42(2): 515-528.
DOI |
LU N S, ZHANG X L, DU Y S, et al., 2023. Objective weather classification and potential source analysis of ozone pollution during summerin Chengdu Plain urban agglomeration[J]. Plateau Meteorology, 42(2): 515-528. | |
[23] | 孟庆涛, 于超, 2022. 2022年6月大气环流和天气分析[J]. 气象, 48(9):1209-1216. |
MENG Q T, YU C, 2022. Analysis of the June 2022 atmospheric circulation and weather[J]. Meteorological Monthly, 48(9): 1209-1216. | |
[24] | 欧林冲, 陈伟华, 伍永康, 等, 2023. 中国高温下臭氧抑制事件的时空特征及其影响因素[J]. 环境科学, 44(12): 6586-6597. |
OU L C, CHEN W H, WU Y K, et al., 2023. The spatiotemporal characteristics and influencing factors of ozone suppression events under high temperatures in China[J]. Environmental Science, 44(12): 6586-6597. | |
[25] | 祁宏, 2022. 西太平洋副热带高压活动对中国臭氧浓度的影响研究[D]. 成都: 成都信息工程大学. |
QI H, 2022. Influence of the Western Pacific Subtropical High activity on ozone concentration in China[D]. Chengdu: Chengdu University of Information Technology. | |
[26] | 史之浩, 2022. 气象条件对中国地区细颗粒物和臭氧污染影响的模拟研究[D]. 南京: 南京信息工程大学. |
SHI Z H, 2022. Simulation study on the impact of meteorological conditions on fine particulate matter and ozone pollution in China[D]. Nanjing: Nanjing University of Information Science and Technology. | |
[27] | 孙博, 王会军, 黄艳艳, 等, 2023. 2022年夏季中国高温干旱气候特征及成因探讨[J]. 大气科学学报, 46(1):1-8. |
SUN B, WANG H J, HUANG Y Y, et al., 2023. Characteristics and causes of the hot-dry climate anomalies in China during summer of 2022[J]. Transactions of Atmospheric Sciences, 46(1): 1-8. | |
[28] |
孙昭萱, 张强, 孙蕊, 等, 2022. 2022年西南地区极端高温干旱特征及其主要影响[J]. 干旱气象, 40(5): 764-770.
DOI |
SUN Z X, ZHANG Q, SUN R, et al., 2022. Characteristics of the extreme high temperature and drought and their main impacts in southwestern China of 2022[J]. Journal of Arid Meteorology, 40(5): 764-770. | |
[29] | 谭桂容, 张祎, 2023. 2022年夏季中国高温的环流异常特征[J]. 海洋气象学报, 43(2): 31-41. |
TAN G R, ZHANG Y, 2023. Anomalous characteristics of high temperature circulation in China in the Summer of 2022[J]. Journal of Marine Meteorology, 43(2): 31-41. | |
[30] | 王磊, 刘端阳, 韩桂荣, 等, 2018. 南京地区近地面臭氧浓度与气象条件关系研究[J]. 环境科学学报, 38(4): 1285-1296. |
WANG L, LIU R Y, HAN G R, et al., 2018. A study on the relationship between near ground ozone concentration and meteorological conditions in Nanjing Area[J]. Acta Scientiae Circumstantiae, 38(4): 1285-1296. | |
[31] | 王皘, 董林, 2022. 2022年8月大气环流和天气分析[J]. 气象, 48(11): 1487-1496. |
WANG Q, DONG L, 2022. Analysis of the August 2022 atmospheric circulation and weather[J]. Meteorological Monthly, 48(11): 1487-1496. | |
[32] | 谢雨竹, 潘月鹏, 倪长健, 等, 2015. 成都市区夏季大气污染物浓度时空变化特征分析[J]. 环境科学学报, 35(4): 975-983. |
XIE Y Z, PAN Y P, NI C J, et al., 2015. Temporal and spatial variations of atmospheric pollutants in urban Chengdu during summer[J]. Acta Scientiae Circumstantiae, 35(4): 975-983. | |
[33] |
谢祖欣, 冯宏芳, 林文, 等, 2020. 气象条件对福州市夏季臭氧(O3)浓度的影响研究[J]. 生态环境学报, 29(11): 2251-2261.
DOI |
XIE Z X, FENG H F, LIN W, et al., 2020. Meteorological factors impact on summertime ozone(O3) concentration in Fuzhou[J]. Ecology and Environmental Sciences, 29(11): 2251-2261. | |
[34] | 徐成鹏, 于超, 2022. 2022年7月大气环流和天气分析[J]. 气象, 48(10): 1354-1360. |
XU C P, YU C, 2022. Analysis of the July 2022 atmospheric circulation and weather[J]. Meteorological Monthly, 48(10): 1354-1360. | |
[35] | 徐敬, 丁国安, 颜鹏, 等, 2007. 北京地区PM2.5的成分特征及来源分析[J]. 应用气象学报, 18(5): 645-654. |
XU J, DING G A, YAN P, et al., 2007. Composition characteristics and source analysis of PM2.5 in Beijing area[J]. Journal of Applied Meteorological Science, 18(5): 645-654. | |
[36] | 徐敬, 张小玲, 赵秀娟, 等, 2009. 夏季局地环流对北京下风向地区O3输送的影响[J]. 中国环境科学, 29(11): 1140-1146. |
XU J, ZHANG X L, ZHAO X J, et al., 2009. Influence of summer local circulation on the transportation of ozone from urban to the downwind area in Beijing[J]. China Environmental Science, 29(11): 1140-1146. | |
[37] | 叶笃正, 黄荣辉, 1991. 我国长江黄河两流域旱涝规律成因与预测研究的进展、成果与问题[J]. 地球科学进展, 6(4): 24-29. |
YE D Z, HUANG R H, 1991. Advances, results and problems of the project “Investigation on laws, causes and predictions of droughts and floods in the Yellow River valley and the Yangtze River valley of China”[J]. Advances in Earth Science, 6(4): 24-29. | |
[38] | 章大全, 袁媛, 韩荣青, 2023. 2022年夏季我国气候异常特征及成因分析[J]. 气象, 49(1): 110-121. |
ZHANG D Q, YUAN Y, HAN R Q, 2023. Characteristics and possible causes of the climate anomalies over China in summer 2022[J]. Meteorological Monthly, 49(1): 110-121. |
[1] | 廖彤, 熊鑫, 王在华, 杨夏捷, 黄映楠, 冯嘉颖. 世界三大湾区大气污染治理经验及对粤港澳大湾区的启示[J]. 生态环境学报, 2022, 31(11): 2242-2250. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||