生态环境学报 ›› 2023, Vol. 32 ›› Issue (6): 1026-1036.DOI: 10.16258/j.cnki.1674-5906.2023.06.003
肖博1(), 王邵军1,2,*(), 解玲玲1, 王郑钧1, 郭志鹏1, 张昆凤1, 张路路1, 樊宇翔1, 郭晓飞1, 罗双1, 夏佳慧1, 李瑞1, 兰梦杰1, 杨胜秋1
收稿日期:
2023-03-20
出版日期:
2023-06-18
发布日期:
2023-09-01
通讯作者:
*王邵军(1965年生),男,教授,博士,博士研究生导师,主要从事全球变化生态、林业碳汇、土壤动物生态、森林生态、石漠化治理等研究。E-mail: shaojunwang2009@163.com作者简介:
肖博(1998年生),男,硕士研究生,主要从事森林土壤碳氮循环及温室气体排放研究。E-mail: xiaobo5751@163.com
基金资助:
XIAO Bo1(), WANG Shaojun1,2,*(), XIE Lingling1, WANG Zhengjun1, GUO Zhipeng1, ZHANG Kunfeng1, ZHANG Lulu1, FAN Yuxiang1, GUO Xiaofei1, LUO Shuang1, XIA Jiahui1, LI Rui1, LAN Mengjie1, YANG Shengqiu1
Received:
2023-03-20
Online:
2023-06-18
Published:
2023-09-01
摘要:
蚂蚁作为生态系统工程师,其筑巢定居活动能调控土壤微生物活动及理化环境,进而驱动热带森林土壤氮库动态及其组分分配过程。以西双版纳白背桐群落为研究对象,设置蚁巢和非蚁巢2种处理,分析蚂蚁筑巢活动引起土壤温度、水分、容重、pH及碳库(总有机碳、微生物生物量碳、易氧化有机碳)的改变对氮库(全氮、铵氮、硝氮及水解氮)及其分配(水解氮/全氮、铵氮/全氮、硝氮/全氮)的影响特征。结果表明:(1)蚂蚁筑巢显著提高了土壤氮库各组分含量(P=0.008),蚁巢全氮、水解氮、铵氮、硝氮含量分别是非蚁巢的1.26、1.2、1.13、1.37倍;(2)蚂蚁筑巢显著影响土壤氮库组分的时空变化(P=0.019),湿季与干季蚁巢全氮、水解氮、铵氮、硝氮含量,分别是非蚁巢的1.13—1.37倍,且沿土层减幅(53.9%—64.3%)显著低于非蚁巢(60.5%—76.4%);(3)蚂蚁筑巢显著改变了各氮组分分配的时空格局,蚁巢各月份氮组分占比(1.94%—11.0%)显著高于非蚁巢(1.60%—9.78%),蚁巢氮组分分配最大值在5—10 cm(4.83%),而非蚁巢却在0—5 cm土层(4.53%);(4)蚂蚁筑巢显著降低土壤pH和容重(3.18%—10.3%),增加土壤温度和含水率(3.08%—8.68%),提高土壤碳库组分含量(105%—116%);(5)主成分分析表明,土壤碳库各组分含量及温度变化是调节氮库动态的主要驱动因子,而土壤pH和容重变化是氮组分分配的主控因子。因此,蚂蚁筑巢通过改变热带森林土壤微气候、紧实度及碳库各组分含量,进而调控土壤氮库及分配的时空动态。研究结果有助于阐明热带森林土壤氮库各组分分配过程的生物学调控机制。
中图分类号:
肖博, 王邵军, 解玲玲, 王郑钧, 郭志鹏, 张昆凤, 张路路, 樊宇翔, 郭晓飞, 罗双, 夏佳慧, 李瑞, 兰梦杰, 杨胜秋. 蚂蚁筑巢定居活动对热带森林土壤氮库及组分分配的影响[J]. 生态环境学报, 2023, 32(6): 1026-1036.
XIAO Bo, WANG Shaojun, XIE Lingling, WANG Zhengjun, GUO Zhipeng, ZHANG Kunfeng, ZHANG Lulu, FAN Yuxiang, GUO Xiaofei, LUO Shuang, XIA Jiahui, LI Rui, LAN Mengjie, YANG Shengqiu. Effect of Ant Nesting Activity on Soil Nitrogen Component Allocation in the Xishuangbanna Tropical Forests[J]. Ecology and Environment, 2023, 32(6): 1026-1036.
图1 蚁巢和非蚁巢全氮及其各组分含量时空动态 不同大写字母表示同一月份不同处理差异显著(P<0.05),不同小写字母表示同一处理不同月份显著差异(P<0.05)
Figure 1 The concentrations of nitrogen pools in ant nests and reference soils
图2 蚁巢与非蚁巢地土壤氮组分分配的时空动态 TN:全氮 Total nitrogen;HN:水解氮 Hydrolyzable nitrogen;NH4+-N:铵氮 Ammonium nitrogen;NO3--N:硝氮 Nitrate nitrogen;HN/TN:水解氮占比;NH4+-N/TN:铵氮占比;NO3--N/TN:硝氮占比
Figure 2 The allocations of nitrogen pools in ant nests and reference soils
月份 | 土壤 | pH | 容重/ (g·cm-3) | 温度/ ℃ | 含水率/ % | 总有机碳 质量分数/(g·kg-1) | 微生物生物量碳 质量分数/(g·kg-1) | 易氧化有机碳 质量分数/(g·kg-1) |
---|---|---|---|---|---|---|---|---|
3 | 蚁巢 | 3.97±0.03Aa | 1.28±0.04Aab | 19.7±0.22Ad | 8.96±0.36Ad | 32.0±1.54Ab | 1.54±0.11Ab | 8.41±0.43Ac |
非蚁巢 | 4.02±0.04Aa | 1.39±0.01Ba | 19.2±0.06Bd | 9.45±0.82Ad | 30.3±1.10Ab | 1.13±0.23Ab | 7.36±0.48Ac | |
6 | 蚁巢 | 3.69±0.02Ab | 1.22±0.01Abc | 24.7±0.06Ab | 17.8±0.53Bb | 46.6±1.18Aa | 2.56±0.01Aa | 14.2±0.46Aa |
非蚁巢 | 3.71±0.01Bc | 1.29±0.03Ba | 24.3±0.15Bb | 22.8±1.62Ab | 45.4±0.35Ba | 2.48±0.05Ba | 12.7±0.25Ba | |
9 | 蚁巢 | 3.65±0.02Ab | 1.17±0.04Ac | 25.9±0.21Aa | 26.6±0.53Ba | 34.2±2.78Ab | 2.53±0.36Aa | 11.0±0.57Ab |
非蚁巢 | 3.87±0.06Bb | 2.08±0.17Ba | 25.5±0.14Ba | 27.3±0.94Aa | 29.8±1.05Bb | 2.39±0.31Aa | 8.75±0.34Bb | |
12 | 蚁巢 | 3.96±0.04Aa | 1.33±0.03Aa | 21.7±0.09Ac | 16.4±0.23Bc | 34.9±1.13Ab | 1.07±0.03Ab | 5.09±0.38Ad |
非蚁巢 | 3.87±0.01Ab | 1.41±0.01Aa | 20.3±0.29Bc | 16.8±0.36Ac | 34.1±2.39Ab | 0.46±0.13Bc | 4.59±0.35Ad |
表1 蚁巢和非蚁巢土壤的基本性质
Table1 Basic edaphic properties of the sampled soils
月份 | 土壤 | pH | 容重/ (g·cm-3) | 温度/ ℃ | 含水率/ % | 总有机碳 质量分数/(g·kg-1) | 微生物生物量碳 质量分数/(g·kg-1) | 易氧化有机碳 质量分数/(g·kg-1) |
---|---|---|---|---|---|---|---|---|
3 | 蚁巢 | 3.97±0.03Aa | 1.28±0.04Aab | 19.7±0.22Ad | 8.96±0.36Ad | 32.0±1.54Ab | 1.54±0.11Ab | 8.41±0.43Ac |
非蚁巢 | 4.02±0.04Aa | 1.39±0.01Ba | 19.2±0.06Bd | 9.45±0.82Ad | 30.3±1.10Ab | 1.13±0.23Ab | 7.36±0.48Ac | |
6 | 蚁巢 | 3.69±0.02Ab | 1.22±0.01Abc | 24.7±0.06Ab | 17.8±0.53Bb | 46.6±1.18Aa | 2.56±0.01Aa | 14.2±0.46Aa |
非蚁巢 | 3.71±0.01Bc | 1.29±0.03Ba | 24.3±0.15Bb | 22.8±1.62Ab | 45.4±0.35Ba | 2.48±0.05Ba | 12.7±0.25Ba | |
9 | 蚁巢 | 3.65±0.02Ab | 1.17±0.04Ac | 25.9±0.21Aa | 26.6±0.53Ba | 34.2±2.78Ab | 2.53±0.36Aa | 11.0±0.57Ab |
非蚁巢 | 3.87±0.06Bb | 2.08±0.17Ba | 25.5±0.14Ba | 27.3±0.94Aa | 29.8±1.05Bb | 2.39±0.31Aa | 8.75±0.34Bb | |
12 | 蚁巢 | 3.96±0.04Aa | 1.33±0.03Aa | 21.7±0.09Ac | 16.4±0.23Bc | 34.9±1.13Ab | 1.07±0.03Ab | 5.09±0.38Ad |
非蚁巢 | 3.87±0.01Ab | 1.41±0.01Aa | 20.3±0.29Bc | 16.8±0.36Ac | 34.1±2.39Ab | 0.46±0.13Bc | 4.59±0.35Ad |
图4 蚁巢和非蚁巢土壤环境因子与氮组分及其分配的主成分分析 样本量n=12;TOC:总有机碳 Total organic carbon;MBC:微生物生物量碳 Microbial biomass carbon;ROC:易氧化有机碳 Readily oxidizable carbon;pH:土壤pH;SWC:土壤含水率 Soil water content;ST:土壤温度 Soil temperature;SBD:土壤容重 Soil bulk density;其中红色箭头:HN/TN:水解氮占比;NH4+-N/TN:铵氮占比;NO3--N/TN:硝氮占比
Figure 4 Principal component analysis of soil environmental factors and nitrogen fractions and their distribution in nest and reference soils
[1] |
ARAUJO Y, LUIZO F J, BARROS E, 2004. Effect of earthworm addition on soil nitrogen availability, microbial biomass and litter decomposition in mesocosms[J]. Biology and Fertility of Soils, 39(3): 146-152.
DOI URL |
[2] |
BAMMINGER C, ZAISER N, ZINSSER P, et al., 2014. Effects of biochar, earthworms, and litter addition on soil microbial activity and abundance in a temperate agricultural soil[J]. Biology and Fertility of Soils, 50(8): 1189-1200.
DOI URL |
[3] |
BENDER M R, WOOD C W, 2003. Influence of red imported fire ants on greenhouse gas emissions from a piedmont plateau pasture[J]. Communications in Soil Science and Plant Analysis, 34(13-14): 1873-1889.
DOI URL |
[4] | BIERBAß P, GUTKNECHT J L M, MICHALZIK B, et al., 2015. Nest-mounds of the yellow meadow ant (Lasius flavus) at the “Alter Gleisberg”, Central Germany: Hot or cold spots in nutrient cycling?[J] Soil Biology and Biochemistry. |
[5] |
BRUUN S, LUXHOI J, MAGID J, et al., 2006. A nitrogen mineralization model based on relationships for gross mineralization and immobilization[J]. Soil Biology & Biochemistry, 38(9): 2712-2721.
DOI URL |
[6] | BRUYN L, CONACHER A, 1990. The role of termites and ants in soil modification: A review?[J]. Soil Research, 28(1): 55-93. |
[7] |
CARRILLO Y, BALL B A, BRADFORD M A, et al., 2011. Soil fauna alter the effects of litter composition on nitrogen cycling in a mineral soil[J]. Soil Biology and Biochemistry, 43(7): 1440-1449.
DOI URL |
[8] |
CRIST T O, MACMAHON J A, 1991. Foraging patterns of Pogolomyrmex occidentalis (Hymenoptera: Formicidae) in a shrub-steppe ecosystem: the roles of temperature trunk trails and seed resource[J]. Environmental Entomology, 20(1): 265-275.
DOI URL |
[9] |
DAUBER J, WOLTERS V, 2000. Microbial activity and functional diversity in the mounds of three different ant species[J]. Soil Biology and Biochemistry, 32(1): 93-99.
DOI URL |
[10] | FARJI-BRENER A G, 2010. Leaf-cutting ant nests and soil biota abundance in a semi-arid steppe of northwestern patagonia[J]. Sociobiology, 56(2): 549-557. |
[11] |
FISHER F M, GOSZ J R, 1986. Effects of trenching on soil processes and properties in a New Mexico mixed-conifer forest[J]. Biology and Fertility of Soils, 2(1): 35-42.
DOI URL |
[12] |
FROUZ J, 2000. The effect of nest moisture on daily temperature regime in the nests of Formica polyctena wood ants[J]. Insectes Sociaux, 47(3): 229-235.
DOI URL |
[13] | GERRARD J, PATON T R, HUMPHREYS G S, et al., 1995. Soils: a new global view[J]. Geographical Journal, 162(2): 225. |
[14] |
GINZBURG O, WHITFORD W G, STEINBERGER Y, 2008. Effects of harvester ant (Messor spp.) activity on soil properties and microbial communities in a Negev Desert ecosystem[J]. Biology and Fertility of Soils, 45(2): 165-173.
DOI URL |
[15] |
JOERGENSEN R G, CASTILLO X, 2001. Interrelationships between microbial and soil properties in young volcanic ash soils of Nicaragua[J]. Soil Biology and Biochemistry, 33(12-13): 1581-1589.
DOI URL |
[16] |
KHAMZINA A, LAMERS J P A, MARTIUS C, 2016. Above- and belowground litter stocks and decay at a multi-species afforestation site on arid, saline soil[J]. Nutrient Cycling in Agroecosystems, 104(2): 187-199.
DOI URL |
[17] |
LANG M, CZI Z C, MARY B, et al., 2010. Land- use type and temperature affect gross nitrogen transformation rates in Chinese and Canadian soils[J]. Plant and Soil, 334(S1-2): 377-389.
DOI URL |
[18] | MACMAHON J A, MULL J F, CRIST T O, 2000. Harvester ants (Pogonomyrmex spp.): Their community and ecosystem influences[J]. Annual Review of Ecology & Systematics, 31(1): 265-291. |
[19] |
MANDEL R D, SORENSON C J, 1982. The role of the western harvester ant (Pogonomyrmex occidentalis) in soil formation[J]. Soil Science Society of America Journal, 46(4): 785-788.
DOI URL |
[20] |
MILLIGAN G, BOOTH K E, COX E S, et al., 2018. Change to ecosystem properties through changing the dominant species: Impact of Pteridium aquilinum-control and heathland restoration treatments on selected soil properties[J]. Journal of Environmental Management, 207: 1-9.
DOI PMID |
[21] |
MONTAGUE T, KJELGREN R, 2004. Energy balance of six common landscape surfaces and the influence of surface properties on gas exchange of four containerized tree species[J]. Scientia Horticulturae, 100(1-4): 229-249.
DOI URL |
[22] |
NIU S L, CLASSEN A T, DUKES J S, et al, 2016. Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle[J]. Ecology Letters, 19(6): 697-709.
DOI URL |
[23] |
OHASHI M, MEAKAWA Y, HASHIMOTO Y, et al., 2017. CO2 emission from subterranean nests of ants and termites in a tropical rain forest in Sarawak, Malaysia[J]. Applied Soil Ecology, 117-118: 147-155.
DOI URL |
[24] |
SAIEM M, HOLE F, 1968. Ant (Formica exectoides) pedoturbacion in a forest soil[J]. Soil Science Society of America Journal, 32(4): 563-567.
DOI URL |
[25] |
SEO K W, HEO S J, SON Y, et al., 2011. Soil moisture condition and soil nitrogen dynamics in a pure Alnus japonica forest in Korea[J]. Landscape and Ecological Engineering, 7(1): 93-99.
DOI URL |
[26] |
VINOLAS L C, VALLEJO V R, JONES D L, 2001. Control of amino acid mineralization and microbial metabolism by temperature[J]. Soil Biology and Biochemistry, 33(7-8): 1137-1140.
DOI URL |
[27] |
WAGNER D, JONES J B, 2006. The impact of harvester ants on decomposition, N mineralization, litter quality, and the availability of N to plants in the Mojave Desert[J]. Soil Biology & Biochemistry, 38(9): 2593-2601.
DOI URL |
[28] |
WANG S J, WANG H, LI J H, et al., 2017. Ants can exert a diverse effect on soil carbon and nitrogen pools in a Xishuangbanna tropical forest[J]. Soil Biology & Biochemistry, 113: 45-52.
DOI URL |
[29] |
YANG K, ZHU J J, YAN Q L, 2012. Soil enzyme activities as potential indicators of soluble organic nitrogen pools in forest ecosystems of northeast China[J]. Annals of Forest Science, 69(7): 795-803.
DOI URL |
[30] | YINGWU C, XINRONG L I, YANGUI S U, et al., 2007. Study on the eco-functions of Formica cunicularia (Hymenoptera: Formicidae) in a revegetated area on the southeast fringe of Tengger Desert, North China[J]. Acta Ecologica Sinica, 27(4): 1508-1514. |
[31] | 曹乾斌, 王邵军, 任玉连, 等, 2019. 蚂蚁筑巢对西双版纳热带森林土壤碳矿化动态的影响[J]. 应用生态学报, 30(12): 4231-4239. |
CAO Q B, WANG S J, REN Y L, et al., 2019. Effects of ant colonization on spatiotemporal variation of organic carbon mineralization in Xishuangbanna tropical forest soils[J]. Chinese Journal of Applied Ecology, 30(12): 4231-4239. | |
[32] |
曹润, 王邵军, 陈闽昆, 等, 2019. 西双版纳热带森林不同恢复阶段土壤微生物生物量碳的变化[J]. 生态环境学报, 28(10): 1982-1990.
DOI |
CAO R, WANG S J, CHEN M K, et al., 2019. Changes of soil microbial biomass carbon along with tropical forest restoration in Xishuangbanna[J]. Ecology and Environmental Sciences, 28(10): 1982-1990. | |
[33] |
车昭碧, 徐鹏飞, 郭亚亚, 等, 2021. 不同草地类型的北方蚁蚁巢及周围土壤理化性质特征分析[J]. 草地学报, 29(5): 982-990.
DOI |
CHE Z B, XU P F, GUO Y Y, et al., 2021. Analysis of Soil Physical and Chemical properties of Formica aquilonia Yarrow Nest and Surrounding in Different Grassland Types[J]. Acta Agrestia Sinica, 29(5): 982-990. | |
[34] | 陈小云, 刘满强, 胡锋, 等, 2007. 根际微型土壤动物——原生动物和线虫的生态功能[J]. 生态学报, 27(8): 3132-3143. |
CHEN X Y, LIU M Q, HU F, et al., 2007. Contributions of soil micro-fauna (protozoa and nematodes) to rhizosphere ecological functions[J]. Acta Ecologica Sinica, 27(8): 3132-3143.
DOI URL |
|
[35] | 陈应武, 李新荣, 苏延桂, 等, 2007. 腾格里沙漠人工植被区掘穴蚁 (Formica cunicularia) 的生态功能[J]. 生态学报, 27(4): 1508-1514. |
CHEN Y W, LI X R, SU Y G, et al., 2007. Study on the eco-functions of Formica cunicularia (Hymenoptera: Formicidae) in a revegetated area on the southeast fringe of Tengger Desert, North China[J]. Acta Ecologica Sinica, 27(4): 1508-1514. | |
[36] | 陈元瑶, 魏琮, 贺虹, 等, 2012. 秦岭地区2种蚂蚁巢内土壤理化性质和微生物量的相关性研究[J]. 西北林学院学报, 27(2): 121-126. |
CHEN Y Y, WEI Z, HE H, et al., 2012. Correlation of physicochemical characteristics and microbial biomass among nest soil of camponotus japonicus and pachycondyla astute in Qinling Mountains[J]. Journal of Northwest Forestry University, 27(2): 121-126. | |
[37] | 郭继勋, 仲伟彦, 1994. 羊草草原植物-土壤之间主要营养元素动态的研究[J]. 植物生态学报, 18(1): 17-22. |
GUO J X, ZHONG W Y, 1994. A study on the dynamics of major nutrient elements between plant and soil in an aneurolepidium chinensis grassland[J]. Acta Phytoecologica Sinica, 18(1): 17-22. | |
[38] | 郎漫, 李平, 魏玮, 2020. 不同质地黑土净氮转化速率和温室气体排放规律研究[J]. 农业环境科学学报, 39(2): 429-436. |
LANG P, LI P, WEI W, 2020. Regularity of net nitrogen transformation rates and greenhouse gas emissions in black soil of different textures[J]. Journal of Agro-Environment Science, 39(2): 429-436. | |
[39] | 李娜, 尹春淼, 屠人凤, 2021. 样品存放条件对土壤中碱解氮含量测定值的影响[J]. 安徽农学通报, 27(9): 102-104. |
LI N, YIN C M, TU R F, 2021. Effect of sample preservation on the measured content of soil effective nitrogen[J]. Anhui Agricultural Science Bulletin, 27(9): 102-104. | |
[40] |
李少辉, 王邵军, 张哲, 等, 2019. 蚂蚁筑巢对西双版纳热带森林土壤易氧化有机碳时空动态的影响[J]. 应用生态学报, 30(2): 413-419.
DOI |
LI S H, WANG S J, ZHANG Z, et al., 2019. Effects of ant nesting on the spatiotemporal dynamics of soil easily oxidized organic carbon in Xishuangbanna tropical forests, China[J]. Chinese Journal of Applied Ecology, 30(2): 413-419. | |
[41] | 李婷婷, 聂富育, 杨万勤, 等, 2018. 四川盆地西缘4种人工林土壤活性氮季节动态[J]. 应用与环境生物学报, 24(4): 744-750. |
LI T T, NIE F Y, YANG W Q, et al., 2018. Seasonal dynamics of labile soil nitrogen from four plantations at the western edge of the Sichuan Basin[J]. Chinese Journal of Applied and Environmental Biology, 24(4): 744-750. | |
[42] | 廖鑫宇, 盛建东, 程军回, 等, 2022. 新疆山地草甸土壤全氮变化特征与影响因素的关系分析[J]. 天津农业科学, 28(7): 34-43. |
LIAO X Y, SHENG J D, CHENG J H, et al., 2022. Relationship Between Soil Total Nitrogen Change Characteristics and Influencing Factors in Mountainous Meadow in Xinjiang[J]. Tianjin Agricultural Sciences, 28(7): 34-43. | |
[43] |
刘建国, 刘卫国, 2018. 微生物介导的氮循环过程研究进展[J]. 草地学报, 26(2): 277-283.
DOI |
LIU J G, LIU W G, 2018. Advances in microbial-mediated nitrogen cycling[J]. Acta Agrestia Sinica, 26(2): 277-283. | |
[44] | 刘永贤, 熊柳梅, 韦彩会, 等, 2014. 广西典型土壤上不同林分的土壤肥力分析与综合评价[J]. 生态学报, 38(2): 5229-5233. |
LIU Y X, XIONG L M, WEI C H, et al., 2014. Changes of soil fertility and its comprehensive evaluation under different stands in typical types of soils in Guangxi province[J]. Acta Ecologica Sinica, 34(18): 5229-5233. | |
[45] | 罗达, 史作民, 王卫霞, 等, 2015. 南亚热带格木、马尾松幼龄人工纯林及其混交林生态系统碳氮储量[J]. 生态学报, 35(18): 6051-6059. |
LUO D, SHI Z M, WANG W X, et al., 2015. Carbon and nitrogen storage in monoculture and mixed young plantation stands of Erythrophleum fordii and Pinus massoniana in subtropical China[J]. Acta Ecologica Sinica, 35(18): 6051-6059. | |
[46] | 莫江明, 彭少麟, 方运霆, 等, 2001. 鼎湖山马尾松针阔叶混交林土壤有效氮动态的初步研究[J]. 生态学报, 21(3): 492-497. |
MO J M, PENG S L, FANG Y J, et al., 2001. A preliminary study on the dynamics of bio-available nitrogen in soils of pine-broadleaf mixed forest in Dinghuashan Biosphere Reserve[J]. Acta Ecologica Sinica, 21(3): 492-497. | |
[47] | 孙福来, 张延霞, 庞祥锋, 等, 2007. 长期定位施肥对土壤有机质和碱解氮及冬小麦产量的影响[J]. 土壤通报, 38(5): 1016-1018. |
SUN F L, ZHANG Y X, PANG X F, et al., 2007. Effects of long- term fertilization on soil organic matter, available nitrogen and wheat yield[J]. Chinese Journal of Soil Science, 38(5): 1016-1018. | |
[48] | 田冬, 高明, 徐畅, 2016. 土壤水分和氮添加对3种质地紫色土氮矿化及土壤pH的影响[J]. 水土保持学报, 30(1): 255-261. |
TIAN D, GAO M, XU C, 2016. Effects of soil moisture and nitrogen addition on nitrogen mineralization and soil ph in purple soil of three different textures[J]. Journal of Soil and Water Conservation, 30(1): 255-261. | |
[49] | 王国兵, 王丰, 金裕华, 等, 2011. 武夷山不同海拔植被土壤微生物量N时空变异[J]. 生态学杂志, 30(4): 784-789. |
WANG G B, WANG F, JIN Y H, et al., 2011. Spatiotem poral variation of soil microbial biomass N under different vegetations along an altitude gradient in Wuyi Mountains of Southeast China[J]. Chinese Journal of Ecology, 30(4): 784-789. | |
[50] | 王红静, 马金宝, 丛百明, 等, 2021. 氮添加对科尔沁沙地羊草产量及氮肥利用效率的影响[J]. 草原与草坪, 41(2): 47-52. |
WANG H J, MA J B, CONG B M, et al., 2021. Effects of nitrogen application on yield and nitrogen use efficiency of Leymus chinensis in Horqin sandy land[J]. Grassland and Turf, 41(2): 47-52. | |
[51] | 王晋, 庄舜尧, 朱兆良, 2014. 不同种植年限水田与旱地土壤有机氮组分变化[J]. 土壤学报, 51(2): 286-294. |
WANG J, ZHUANG S Y, ZHU Z L, 2014. Fractions of soil organic nitrogen in paddy andupland soils relative to cropping history[J]. Acta Pedologica Sinica, 51(2): 286-294. | |
[52] |
王邵军, 王红, 李霁航, 2016. 热带森林不同演替阶段蚂蚁巢穴的分布特征及其影响因素[J]. 生物多样性, 24(8): 916-921.
DOI |
WANG S J, WANG H, LI J H, 2016. Distribution characteristics of ant mounds and correlating factors across different succession stages of tropical forests in Xishuangbanna[J]. Biodiversity Science, 24(8): 916-921.
DOI |
|
[53] | 王霞, 李辉信, 朱玲, 等, 2008. 蚯蚓活动对土壤氮素矿化的影响[J]. 土壤学报, 45(4): 641-648. |
WANG X, LI H X, ZHU L, et al., 2008. Effects of earthworms on soil N mineralization[J]. Acta Pedologica Sinica, 45(4): 641-648. | |
[54] | 武海涛, 吕宪国, 杨青, 等, 2006. 土壤动物主要生态特征与生态功能研究进展[J]. 土壤学报, 43(2): 314-323. |
WU H T, LÜ X G, YANG Q, et al., 2006. Ecological characteristics and functions of soil fauna community[J]. Acta Pedologica Sinica, 43(2): 314-323. | |
[55] | 徐丽, 何念鹏, 2020. 中国森林生态系统氮储量分配特征及其影响因素[J]. 中国科学:地球科学, 50(10): 1374-1385. |
XU L, HE N P, 2020. Nitrogen storage and allocation in China’s forest ecosystems[J]. Scientia Sinica (Terrae), 50(10): 1374-1385. | |
[56] | 杨静, 聂三安, 杨文浩, 等, 2018. 不同施肥水稻土可溶性有机氮组分差异及影响因素[J]. 土壤学报, 55(4): 955-966. |
YANG J, NIE S A, YANG W H, CHEN C R, et al., 2018. Effects of various influencing factors of soil soluble organic nitrogen components under different long-term fertilization treatments in paddy soil[J]. Acta Pedologica Sinica, 55(4): 175-186. | |
[57] | 杨莉琳, 姚琦馥, 梁琍, 等, 2020. 土壤氮素内循环对生态覆被变化响应的研究进展[J]. 中国生态农业学报 (中英文), 28(10): 1543-1550. |
YANG L L, YAO Q F, LIANG L, et al., 2020. Research progress on soil nitrogen internal cycling response to ecological cover change[J]. Chinese Journal of Eco-Agriculture, 28(10): 1543-1550. | |
[58] | 尹文英, 2001. 土壤动物学研究的回顾与展望[J]. 生物学通报, 36(8): 1-3. |
YIN W Y, 2001. Review and prospect of soil zoology research[J]. Bulletin of Biology, 36(8): 1-3. | |
[59] | 张楚儿, 2017. 岷江上游土壤有机氮组分空间分布特征及影响因素研究[D]. 成都: 四川农业大学. |
ZHANG C E, 2017. Distribution characteristics of soil organic nitrogen fractions and its influcing factors in the upper Minjiang River[D]. Chengdu: Sichuan Agricultural University. | |
[60] | 张文文, 2016. 苏北沿海不同土地利用类型土壤动物对土壤氮矿化的影响[D]. 南京: 南京林业大学. |
ZHANG W W, 2016. Effects of soil fauna on soil N mineralization under different land use in a coastal area of northern Jiangsu, China[D]. Nanjing: Nanjing Forestry University. | |
[61] |
张雪慧, 张仲胜, 武海涛, 2020. 蚂蚁扰动对土壤有机碳循环过程的影响研究进展[J]. 应用生态学报, 31(12): 4301-4311.
DOI |
ZHANG X H, ZHANG Z S, WU H T, 2020. Effects of ant disturbance on soil organic carbon cycle: A review[J]. Chinese Journal of Applied Ecology, 31(12): 4301-4311. | |
[62] | 赵满兴, 白二磊, 刘慧, 等, 2019. 黄土丘陵区人工林土壤可溶性氮组分季节变化[J]. 水土保持学报, 33(2): 257-263. |
ZHAO M X, BAI E L, LIU H, et al., 2019. Seasonal variation of soil soluble nitrogen fractions in plantation in loess hilly region[J]. Journal of Soil and Water Conservation, 33(2): 257-263. | |
[63] | 左倩倩, 王邵军, 2021a. 生物与非生物因素对森林土壤氮矿化的调控机制[J]. 浙江农林大学学报, 38(3): 613-623. |
ZUO Q Q, WANG S J, 2021a. Regulation mechanism of biotic and abiotic factors on the nitrogen mineralization of forest soil[J]. Journal of Zhejiang A & F University, 38(3): 613-623. | |
[64] | 左倩倩, 王邵军, 王平, 等, 2021b. 蚂蚁筑巢对西双版纳热带森林土壤有机氮矿化的影响[J]. 生态学报, 41(18):7339-7347. |
ZUO Q Q, WANG S J, WANG P, et al., 2021b. Effect of ant colonization on soil organic nitrogen mineralization in the Xishuangbanna tropical forest[J]. Acta Ecologica Sinica, 41(18): 7339-7347. |
[1] | 夏美君, 李健, 闫永蚕. 京津冀城市群生态福利绩效时空格局及演进特征[J]. 生态环境学报, 2023, 32(4): 814-824. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||