[1] |
BECHTEL B, DEMUZERE M, MILLS G, et al., 2019. SUHI analysis using local climate zones: A comparison of 50 cities[J]. Urban Climate, 28: 100451.
|
[2] |
CHANG Y, XIAO J F, LI X X, et al., 2021. Exploring diurnal thermal variations in urban local climate zones with ECOSTRESS land surface temperature data[J]. Remote Sensing of Environment, 263: 112544.
|
[3] |
DEMUZERE M, KITTNER J, MARTILLI A, et al., 2022. A global map of local climate zones to support earth system modelling and urban-scale environmental science[J]. Earth System Science Data, 14(8): 3835-3873.
|
[4] |
EISENMAN D P, WILHALME H, TSENG C, et al., 2016. Heat death associations with the built environment, social vulnerability and their interactions with rising temperature[J]. Health & Place, 41: 89-99.
|
[5] |
HU L Q, WILHELMI O V, UEJIO C, 2019. Assessment of heat exposure in cities: Combining the dynamics of temperature and population[J]. Science of The Total Environment, 655: 1-12.
|
[6] |
INGOLE V, SHERIDAN S C, JUVEKAR S, et al., 2022. Mortality risk attributable to high and low ambient temperature in Pune city, India: A time series analysis from 2004 to 2012[J]. Environmental Research, 204(Part C): 112304.
|
[7] |
IPCC, 2012. Managing the risks of extreme events and disasters to advance climate change adaptation[R]. Cambridge: Cambridge University Press.
|
[8] |
JONES B, O NEILL B C, MCDANIEL L, et al., 2015. Future population exposure to US heat extremes[J]. Nature Climate Change, 5(7): 652-655.
|
[9] |
KALISA E, FADLALLAH S, AMANI M, et al., 2018. Temperature and air pollution relationship during heatwaves in Birmingham, UK[J]. Sustainable Cities and Society, 43: 111-120.
|
[10] |
QUAN J L, 2019. Enhanced geographic information system-based mapping of local climate zones in Beijing, China[J]. Science China (Technological Sciences), 62(12): 2243-2260.
|
[11] |
SIMON J H, KERRY C, JULIA B, et al., 2020. In-flight validation of the ECOSTRESS, Landsats 7 and 8 thermal infrared spectral channels using the Lake Tahoe CA/NV and Salton Sea CA automated validation sites[J]. IEEE Transactions on Geoscience and Remote Sensing, 58(2): 1294-1302.
|
[12] |
SANTAMOURIS M, CARTALIS C, SYNNEFA A, et al., 2015. On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings: A review[J]. Energy and Buildings, 98: 119-124.
|
[13] |
STEWART I D, OKE T R, 2012. Local climate zones for urban temperature studies[J]. Bulletin of the American Meteorological Society, 93(12): 1879-1900.
|
[14] |
TAYLOR J, WILKINSON P, DAVIES M, et al., 2015. Mapping the effects of urban heat island, housing, and age on excess heat-related mortality in London[J]. Urban Climate, 14(Part 4): 517-528.
|
[15] |
YUAN B, ZHOU L, HU F N, et al., 2022. Diurnal dynamics of heat exposure in Xi’an: A perspective from local climate zone[J]. Building and Environment, 222: 109400.
|
[16] |
ZHENG Y S, REN C, XU Y, et al., 2018. GIS-based mapping of local climate zone in the high-density city of Hong Kong[J]. Urban Climate, 24: 419-448.
|
[17] |
北京市统计局, 北京市第七次全国人口普查领导小组办公室, 2021. 北京市第七次全国人口普查公报 (第二号)[N]. 北京日报, 2021-5-20( 4).
|
|
Beijing Municipal Bureau of Statistics, Beijing Municipal Leading Group Office for the Seventh National Population Census, 2021. Bulletin of the seventh national population census of Beijing (No. 2)[N]. Beijing Daily, 2021-5-20( 4).
|
[18] |
冯雷, 李旭东, 2016. 高温热浪对人类健康影响的研究进展[J]. 环境与健康杂志, 33(2): 182-188.
|
|
FENG L, LI X D, 2016. Effects of heat waves on human health: A review of recent study[J]. Journal of Environment and Health, 33(2): 182-188.
|
[19] |
葛亚宁, 徐新良, 李静, 等, 2016. 北京城市建筑密度分布对热岛效应的影响研究[J]. 地球信息科学学报, 18(12): 1698-1706.
DOI
|
|
GE Y N, XU X L, LI J, et al., 2016. Study on the influence of urban building density on the heat island effect in Beijing[J]. Journal of Geo-information Science, 18(12): 1698-1706.
|
[20] |
耿树丰, 任嘉义, 杨俊, 等, 2022. 局地气候区视角下的城市热环境研究[J]. 生态学报, 42(6): 2221-2227.
|
|
GENG S F, REN J Y, YANG J, et al., 2022. Exploration of urban thermal environment based on local climate zone[J]. Acta Ecologica Sinica, 42(6): 2221-2227.
|
[21] |
郭城, 2023. 城市热环境昼夜变化的多尺度分析——以广州市中心城区为例[D]. 广州: 广州大学: 35-36.
|
|
GUO C, 2023. Multi-scale analysis of diurnal variation of urban thermal environment: A case study of central city of Guangzhou[D]. Guangzhou: Guangzhou University: 35-36.
|
[22] |
黄群芳, 2023. 北京夏季高温变化特征及对城市热岛强度的影响[J]. 气象科技, 51(1): 66-74.
|
|
HUANG Q F, 2023. Characteristics and amplified effect of summer high temperature on urban heat islands in Beijing[J]. Meteorological Science and Technology, 51(1): 66-74.
|
[23] |
黄晓军, 祁明月, 赵凯旭, 等, 2021. 高温影响下西安市人口脆弱性评估及其空间分异[J]. 地理研究, 40(6): 1684-1700.
|
|
HUANG X J, QI M Y, ZHAO K X, et al., 2021. Assessment of population vulnerability to heat stress and spatial differentiation in Xi’an[J]. Geographical Research, 40(6): 1684-1700.
|
[24] |
蒋玉欣, 毛蒋兴, 2022. 南宁市老城区街道的空间活力及时空特征分析——基于百度热力图数据[J]. 北部湾大学学报, 37(4): 69-76.
|
|
JIANG Y X, MAO J X, 2022. Analysis of spatial vitality and spatial-temporal characteristics of streets in the old urban area of Nanning: Based on Baidu heat map data[J]. Journal of Beibu Gulf University, 37(4): 69-76.
|
[25] |
金星星, 祁新华, 陆玉麒, 等, 2018. 福建省高温热浪风险评估与空间分异研究[J]. 地球信息科学学报, 20(12): 1820-1829.
DOI
|
|
JIN X X, QI X H, LU Y Q, et al., 2018. Evaluation and spatial differentiation of heat waves risk of Fujian Province[J]. Journal of Geo-information Science, 20(12): 1820-1829.
|
[26] |
李媛媛, 2024. “城市-街区”不同尺度下建筑布局对城市热环境影响关系研究[D]. 北京: 北京建筑大学: 10-11.
|
|
LI Y Y, 2024. A study on the influence of building layout on urban thermal environment under different scales of “urban-street”[D]. Beijing: Beijing University of Civil Engineering and Architecture: 10-11.
|
[27] |
林中立, 徐涵秋, 2017. 基于LCZ的城市热岛强度研究[J]. 地球信息科学学报, 19(5): 713-722.
DOI
|
|
LIN Z L, XU H Q, 2017. A study of urban heat island intensity based on “local climate zones”[J]. Journal of Geo-information Science, 19(5): 713-722.
|
[28] |
马永欢, 鹿琳琳, 肖达, 等, 2022. 基于局地气候分区的城市热环境分析——以北京市为例[J]. 北京师范大学学报(自然科学版), 58(6): 901-909.
|
|
MA Y H, LU L L, XIAO D, et al., 2022. Urban thermal environment analysis by local climate zone in Beijing[J]. Journal of Beijing Normal University (Natural Science), 58(6): 901-909.
|
[29] |
单宝艳, 张巧, 任启新, 等, 2022. 基于局地气候分区的济南市热环境空间分异及其影响因素[J]. 地球信息科学学报, 24(4): 711-722.
DOI
|
|
SHAN B Y, ZHANG Q, REN Q X, et al., 2022. Spatial differentiation of urban thermal environment and its influencing factors based on local climate zones in Jinan[J]. Journal of Geo-information Science, 24(4): 711-722.
|
[30] |
吴锦成, 朱烨, 刘懿, 等, 2022. 中国热浪时空变化特征分析[J]. 水文, 42(3): 72-77.
|
|
WU J C, ZHU Y, LIU Y, et al., 2022. Spatio-temporal characteristics of heat waves in China[J]. Journal of China Hydrology, 42(3): 72-77.
|
[31] |
杨梅焕, 姚明昊, 王涛, 等, 2023. 基于局地气候区的西安市城市热环境变化及其影响因素分析[J]. 生态环境学报, 32(9): 1644-1653.
DOI
|
|
YANG M H, YAO M H, WANG T, et al., 2023. Analysis of urban thermal environment change and its influencing factors in Xi’an based on local climate zone[J]. Ecology and Environmental Sciences, 32(9): 1644-1653.
|
[32] |
张伟伟, 贾若愚, 田明, 等, 2024. 利用ECOSTRESS探究LCZ类间和类内城市热环境日动态变化[J]. 地球信息科学学报, 26(3): 679-692.
DOI
|
|
ZHANG W W, JIA R Y, TIAN M, et al., 2024. Exploring diurnal dynamic variations of inter- and intra-LCZ urban thermal environment with ECOSTRESS[J]. Journal of Geo-information Science, 26(3): 679-692.
|