生态环境学报 ›› 2021, Vol. 30 ›› Issue (8): 1683-1694.DOI: 10.16258/j.cnki.1674-5906.2021.08.015
收稿日期:
2021-07-09
出版日期:
2021-08-18
发布日期:
2021-11-03
通讯作者:
* 顾海萍(1988年生),女,博士,主要从事土壤有机污染微生物修复方面的研究。E-mail: guhaiping.1357@163.com作者简介:
阎洁(1996年生),女,硕士研究生,主要从事土壤有机污染微生物修复方面的研究。E-mail: yanjiechenhongqin@126.com
基金资助:
YAN Jie(), YU Xuewei, LI Jianbo, GU Haiping*(
), GUO Erhui
Received:
2021-07-09
Online:
2021-08-18
Published:
2021-11-03
摘要:
利用微生物修复环境中的多环芳烃(PAHs)污染近年来已受到了广泛关注。然而,生物可利用性低是该修复过程中的主要瓶颈。生物表面活性剂由于其良好的增溶性以及环境友好性而备受青睐。因此,筛选既能降解PAHs又能产生生物表面活性剂的菌株仍然是PAHs污染修复研究领域中的热点。以菲为目标污染物,通过透明降解圈和排油圈、表面张力实验从河南信阳一处多年垃圾焚烧场地筛选分离出一株具有菲降解和产生生物表面活性剂双重功能的菌株GHP1,并从菌株形态特征、生理生化特征和16S rDNA基因序列三方面对该菌株进行鉴定;采用高效液相色谱测定了该菌株对菲的降解效率,通过薄层层析和傅里叶红外变换光谱鉴定了该菌株所产生的表面活性剂的类型;此外,通过乳化性能测试进一步探究了培养时间、温度、pH和碳源对菌株培养液乳化活性的影响。实验结果表明:该菌株是Sphingobium abikonense(S. abikonense);培养72 h对初始浓度为100 mg∙L-1菲的降解率可达86.08%,降解半衰期约为27.12 h;初步确定该菌株所产生的生物表面活性剂为脂肽;菌株在72 h、28 ℃、pH 6.5、添加蔗糖的培养条件下培养液的乳化指数最高(59.11%)。这是首次关于S. abikonense降解菲和产生生物表面活性剂的研究,填充了国内外关于S. abikonense降解菲和产生生物表面活性剂特性的空白。该菌株既能降解菲又能产生生物表面活性剂,适应环境能力强,在修复PAHs污染方面具有巨大的应用潜力,为微生物修复PAHs的研究提供有价值的参考。
中图分类号:
阎洁, 余雪巍, 李鉴博, 顾海萍, 郭二辉. 一株菲降解细菌产生生物表面活性剂特性的研究[J]. 生态环境学报, 2021, 30(8): 1683-1694.
YAN Jie, YU Xuewei, LI Jianbo, GU Haiping, GUO Erhui. Research on the Characterization of Surfactant Produced by A Phenanthrene-degrading Strain[J]. Ecology and Environment, 2021, 30(8): 1683-1694.
图3 GHP1在液体(A)、固体(B)LB培养基中的菌体形态和光学显微镜下的革兰氏染色(C)以及透射电子显微镜下的细胞形态(D)
Fig. 3 Morphology of strain GHP1 in liquid (A), solid (B) LB medium, gram staining under light microscope (C) and cell morphology under transmission electron microscope (D)
测试项目 Test items | 结果 Result |
---|---|
需氧性 Aerobism | + |
运动性 Motility | + |
疏水性 Hydrophobicity | 中度亲水性 Moderate hydrophilic |
3-羟基丁酮产生乙酰甲基甲醇 V.P. reaction | W |
甲基红试验 M.R. test | - |
过氧化氢酶 Catalase | + |
脲酶 Urease | - |
淀粉水解 Amylolysis | + |
纤维素水解 Cellulase | - |
精氨酸双水解酶 Arginine dihydrolase | - |
柠檬酸利用 Citrate utilization | - |
赖氨酸脱羧酶 Lysine decarboxilase | - |
鸟氨酸脱羧酶 Ornithine decarboxilase | - |
β-半乳糖苷酶 β-galactosidase | + |
H2S产生 H2S production | - |
吲哚产生 Indole production | - |
色氨酸脱氨酶 Tryptophane deaminase | - |
明胶水解 Gelatinase | - |
D-葡萄糖 D-glucose | - |
D-甘露醇 D-mannitol | - |
肌醇 Inositol | - |
D-山梨醇 D-sorbitol | - |
L-鼠李糖 L-rhamnose | - |
D-蔗糖 D-sucrose | - |
D-蜜二糖 D-melibiose | - |
苦杏仁苷 Amygdaline | - |
L-阿拉伯糖 L-arabinose | - |
表1 GHP1菌株的生理生化特征
Table 1 Physiological and biochemical characteristics of strain GHP1
测试项目 Test items | 结果 Result |
---|---|
需氧性 Aerobism | + |
运动性 Motility | + |
疏水性 Hydrophobicity | 中度亲水性 Moderate hydrophilic |
3-羟基丁酮产生乙酰甲基甲醇 V.P. reaction | W |
甲基红试验 M.R. test | - |
过氧化氢酶 Catalase | + |
脲酶 Urease | - |
淀粉水解 Amylolysis | + |
纤维素水解 Cellulase | - |
精氨酸双水解酶 Arginine dihydrolase | - |
柠檬酸利用 Citrate utilization | - |
赖氨酸脱羧酶 Lysine decarboxilase | - |
鸟氨酸脱羧酶 Ornithine decarboxilase | - |
β-半乳糖苷酶 β-galactosidase | + |
H2S产生 H2S production | - |
吲哚产生 Indole production | - |
色氨酸脱氨酶 Tryptophane deaminase | - |
明胶水解 Gelatinase | - |
D-葡萄糖 D-glucose | - |
D-甘露醇 D-mannitol | - |
肌醇 Inositol | - |
D-山梨醇 D-sorbitol | - |
L-鼠李糖 L-rhamnose | - |
D-蔗糖 D-sucrose | - |
D-蜜二糖 D-melibiose | - |
苦杏仁苷 Amygdaline | - |
L-阿拉伯糖 L-arabinose | - |
图4 基于菌株GHP1与相似菌株16S rDNA序列构建的系统发育树 系统发育树分枝上的数值表示可信度,标尺表示分枝距离
Fig. 4 Phylogenetic tree based on 16S rDNA sequences of strain GHP1 and related type strains Numbers on the branches of a phylogenetic tree indicate confidence, and rulers indicate branch distance
指数方程 Exponential equation | t1/2/h | R2 |
---|---|---|
C=122.67e-0.616t | 27.12 | 0.859* |
表2 GHP1菌株对菲降解的一级动力学方程及半衰期
Table 2 First-order kinetics equations and the corresponding half-life times of phenanthrene biodegradation by strain GHP1
指数方程 Exponential equation | t1/2/h | R2 |
---|---|---|
C=122.67e-0.616t | 27.12 | 0.859* |
菌株 Strain | 菲初始浓度 Initial concentration of phenanthrene/(mg∙L-1) | 时间 Time/h | 降解率 Degradation rate/% | 参考文献 Reference |
---|---|---|---|---|
Sphingobium abikonense GHP1 | 100 | 72 | 86.08 | This study |
Sphingobium fuliginis sp. nov. | 200 | 24 | 100.00 | Prakash et al., |
Novosphingobium TVG9-VII | 100 | 504 | 95.20 | Dong et al., |
Novosphingobium sp. PCY | 100 | 336 | 75.70 | Wongwongsee et al., |
Burkholderia cepacia PM07 | 50 | 576 | 26.20 | Lee et al., |
Microbacterium F10a | 50 | 168 | 98.00 | Sheng et al., |
Microbacterium sp. BPW | 100 | 336 | 70.80 | Wongwongsee et al., |
Alcaligenes EF105546 | 1 | 24 | 34.40 | Abd-Elsalam et al., |
Alcaligenes sp. SSK1B | 100 | 336 | 49.70 | Wongwongsee et al., |
Achromobacter AY189752 | 200 | 504 | 73.20 | Tiwari et al., |
Achromobacter sp. SSK4 | 100 | 336 | 58.70 | Wongwongsee et al., |
Pseudomonas sp. USTB-RU | 100 | 192 | 86.65 | Masakorala et al., |
Ralstonia sp. BPH | 100 | 336 | 65.00 | Wongwongsee et al., |
Bacillus pumilus 1529 | 100 | 504 | 100.00 | Khajavi-Shojaei et al., |
表3 菲降解菌株及其降解率统计表
Table 3 Statistical table of phenanthrene degrading strains and their degradation rates
菌株 Strain | 菲初始浓度 Initial concentration of phenanthrene/(mg∙L-1) | 时间 Time/h | 降解率 Degradation rate/% | 参考文献 Reference |
---|---|---|---|---|
Sphingobium abikonense GHP1 | 100 | 72 | 86.08 | This study |
Sphingobium fuliginis sp. nov. | 200 | 24 | 100.00 | Prakash et al., |
Novosphingobium TVG9-VII | 100 | 504 | 95.20 | Dong et al., |
Novosphingobium sp. PCY | 100 | 336 | 75.70 | Wongwongsee et al., |
Burkholderia cepacia PM07 | 50 | 576 | 26.20 | Lee et al., |
Microbacterium F10a | 50 | 168 | 98.00 | Sheng et al., |
Microbacterium sp. BPW | 100 | 336 | 70.80 | Wongwongsee et al., |
Alcaligenes EF105546 | 1 | 24 | 34.40 | Abd-Elsalam et al., |
Alcaligenes sp. SSK1B | 100 | 336 | 49.70 | Wongwongsee et al., |
Achromobacter AY189752 | 200 | 504 | 73.20 | Tiwari et al., |
Achromobacter sp. SSK4 | 100 | 336 | 58.70 | Wongwongsee et al., |
Pseudomonas sp. USTB-RU | 100 | 192 | 86.65 | Masakorala et al., |
Ralstonia sp. BPH | 100 | 336 | 65.00 | Wongwongsee et al., |
Bacillus pumilus 1529 | 100 | 504 | 100.00 | Khajavi-Shojaei et al., |
图8 不同培养条件对培养液乳化性指数(E24)的影响 数据为平均值±标准差(n=3);标不同字母表示差异显著(P<0.05)。图8中A、B、C、D分别为培养时间、培养温度、培养基初始pH和碳源对培养液乳化性指数(E24)的影响
Fig. 8 The effects of different culture conditions on emulsification index (E24) of culture medium Data are mean±standard deviation (n=3); different lowercase letters mean significant difference at P<0.05 levels, respectively. In figure 8, A, B, C and D represent the influences of culture time, culture temperature, initial pH of medium, and carbon sources on the emulsification index (E24) of culture medium, respectively
[1] | ABD-ELSALAM H E, HAFEZ E E, HUSSAIN A A, et al., 2009. Isolation and identification of three-rings polyaromatic hydrocarbons (anthracene and phenanthrene) degrading bacteria[J]. American-Eurasian Journal of Agricultural & Environmental Sciences, 5(1): 31-38. |
[2] |
ADAMU A, IJAH U J J, RISKUWA M L, et al., 2015. Study on biosurfactant production by two Bacillus Species[J]. International Journal of Scientific Research in Knowledge, 3(1): 13-20.
DOI URL |
[3] |
BASTA T, BUERGER S, STOLZ A, 2005. Structural and replicative diversity of large plasmids from sphingomonads that degrade polycyclic aromatic compounds and xenobiotics[J]. Microbiology, 151(6): 2025-2037.
DOI URL |
[4] | BATOOL R, AYUB S, AKBAR I, 2017. Isolation of biosurfactant producing bacteria from petroleum contaminated sites and their characterization[J]. Soil & Environment, 36(1): 35-44. |
[5] |
BRUZAUD J, TARRADE J, COUDREUSE A, et al., 2015. Flagella but not type IV pili are involved in the initial adhesion of Pseudomonas aeruginosa PAO1 to hydrophobic or superhydrophobic surfaces[J]. Colloids and Surfaces B: Biointerfaces, 131: 59-66.
DOI URL |
[6] |
DENG Z S, JIANG Y Y, CHEN K K, et al., 2020. One biosurfactant-producing bacteria Achromobacter sp. A-8 and its potential use in microbial enhanced oil recovery and bioremediation[J]. Frontiers in Microbiology, DOI: 10.3389/fmicb.2020.00247.
DOI |
[7] |
DONG C M, BAI X H, LAI Q L, et al., 2014. Draft genome sequence of Sphingobium sp. strain C100, a polycyclic aromatic hydrocarbon-degrading bacterium from the deep-sea sediment of the Arctic Ocean[J]. Genome Announcements, DOI: 10.1128/genomeA.01210-13.
DOI |
[8] | DONG C M, CHEN L, LIAO Y T, et al., 2011. Phylogenetic and degrading genes analysis of a PAH-degrading bacterium TVG9-VII from deep-sea hydrythermal environment[J]. Acta Microbiologica Sinica, 51(11): 1548-1554. |
[9] |
GU H P, CHEN Y Z, LIU X M, et al., 2017. The effective migration of Massilia sp. WF 1 by Phanerochaete chrysosporium and its phenanthrene biodegradation in soil[J]. Science of the Total Environment, 593-594: 695-703.
DOI URL |
[10] |
GU H P, YAN K, YOU Q, et al., 2021. Soil indigenous microorganisms weaken the synergy of Massilia sp. WF1 and Phanerochaete chrysosporium in phenanthrene biodegradation[J]. Science of The Total Environment, DOI: 10.1016/j.scitotenv.2021.146655.
DOI |
[11] |
HABA E, ESPUNY M J, BUSQUETS M, et al., 2000. Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils[J]. Journal of Applied Microbiology, 88(3): 379-387.
DOI URL |
[12] |
HABIB S, AHMAD S A, WAN JOHARI W L, et al., 2020. Production of lipopeptide biosurfactant by a hydrocarbon-degrading Antarctic Rhodococcus[J]. International Journal of Molecular Sciences, DOI: 10.3390/ijms21176138.
DOI |
[13] |
HE C Q, DONG W, LI J, et al., 2017. Characterization of rhamnolipid biosurfactants produced by recombinant Pseudomonas aeruginosa strain DAB with removal of crude oil[J]. Biotechnology Letters, 39(9): 1381-1388.
DOI URL |
[14] |
HENTATI D, CHEFFI M, HADRICH F, et al., 2021. Investigation of halotolerant marine Staphylococcus sp. CO100, as a promising hydrocarbon-degrading and biosurfactant-producing bacterium, under saline conditions[J]. Journal of Environmental Management, DOI: 10.1016/j.jenvman.2020.111480.
DOI |
[15] |
HUANG Y, ZHOU H H, ZHENG G, et al., 2020. Isolation and characterization of biosurfactant-producing Serratia marcescens ZCF25 from oil sludge and application to bioremediation[J]. Environmental Science and Pollution Research, 27(22): 27762-27772.
DOI URL |
[16] |
KHAJAVI-SHOJAEI S, MOEZZI A, ENAYATIZAMIR N, et al., 2020. Biodegradation and phytotoxicity assessment of phenanthrene by biosurfactant-producing Bacillus pumilus 1529 bacteria[J]. Chemistry and Ecology, 36(5): 396-409.
DOI URL |
[17] | KITAMOTO D, HANEISHI K, NAKAHARA T, et al., 1990. Production of mannosylerythritol lipids by Candida antarctica from vegetable oils[J]. Agricultural and Biological Chemistry, 54(1): 37-40. |
[18] |
KUMAR A P, JANARDHAN A, VISWANATH B, et al., 2016. Evaluation of orange peel for biosurfactant production by Bacillus licheniformis and their ability to degrade naphthalene and crude oil[J]. 3 Biotech, DOI: 10.1007/s13205-015-0362-x.
DOI |
[19] | LEE D S, LEE M W, WOO S H, et al., 2005. Effects of salicylate and glucose on biodegradation of phenanthrene by Burkholderia cepacia PM07[J]. Journal of Microbiology and Biotechnology, 15(4): 859-865. |
[20] |
MASAKORALA K, YAO J, CAI M, et al., 2013. Isolation and characterization of a novel phenanthrene (PHE) degrading strain Psuedomonas sp. USTB-RU from petroleum contaminated soil[J]. Journal of Hazardous Materials, 263(Part 2): 493-500.
DOI URL |
[21] |
MOUAFO T H, MBAWALA A, NDJOUENKEU R, 2018. Effect of different carbon sources on biosurfactants' production by three strains of Lactobacillus spp.[J]. BioMed Research International, DOI: 10.1155/2018/ 5034783.
DOI |
[22] |
NAVON-VENEZIA S, ZOSIM Z, GOTTLIEB A, et al., 1995. Alasan, a new bioemulsifier from Acinetobacter radioresistens[J]. Applied and Environmental Microbiology, 61(9): 3240-3244.
DOI URL |
[23] |
PACWA-PLOCINICZAK M, PLOCINICZAK T, IWAN J, et al., 2016. Isolation of hydrocarbon-degrading and biosurfactant-producing bacteria and assessment their plant growth-promoting traits[J]. Journal of Environmental Management, 168: 175-184.
DOI URL |
[24] |
PADMAVATHI A R, PANDIAN S K, 2014. Antibiofilm activity of biosurfactant producing coral associated bacteria isolated from Gulf of Mannar[J]. Indian Journal of Microbiology, 54(4): 376-382.
DOI URL |
[25] |
PATOWARY K, PATOWARY R, KALITA M C, et al., 2017. Characterization of biosurfactant produced during degradation of hydrocarbons using crude oil as sole source of carbon[J]. Frontiers in Microbiology, DOI: 10.3389/fmicb.2017.00279.
DOI |
[26] |
PRAKASH O, LAL R, 2006. Description of Sphingobium fuliginis sp. nov., a phenanthrene-degrading bacterium from a fly ash dumping site, and reclassification of Sphingomonas cloacae as Sphingobium cloacae comb. nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 56(9): 2147-2152.
DOI URL |
[27] |
PARTHIPAN P, PREETHAM E, MACHUCA L L, et al., 2017. Biosurfactant and degradative enzymes mediated crude oil degradation by bacterium Bacillus subtilis A1[J]. Frontiers in Microbiology, DOI: 10.3389/fmicb.2017.00193.
DOI |
[28] |
RASHID M H, KORNBERG A, 2000. Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa[J]. Proceedings of the National Academy of Sciences, 97(9): 4885-4890.
DOI URL |
[29] |
SEMPLE K T, MORRISS A W J, PATON G I, 2003. Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis[J]. European Journal of Soil Science, 54(4): 809-818.
DOI URL |
[30] |
SEO J S, KEUM Y S, LI Q X, 2009. Bacterial degradation of aromatic compounds[J]. International Journal of Environmental Research and Public Health, 6(1): 278-309.
DOI URL |
[31] |
SHENG X F, HE L Y, ZHOU L, et al., 2009. Characterization of Microbacterium sp. F10a and its role in polycyclic aromatic hydrocarbon removal in low-temperature soil[J]. Canadian Journal of Microbiology, 55(5): 529-535.
DOI URL |
[32] |
SUN S L, WANG Y X, ZANG T T, et al., 2019. A biosurfactant-producing Pseudomonas aeruginosa S5 isolated from coking wastewater and its application for bioremediation of polycyclic aromatic hydrocarbons[J]. Bioresource Technology, 281: 421-428.
DOI URL |
[33] |
TIWARI J N, REDDY M M K, PATEL D K, et al., 2010. Isolation of pyrene degrading Achromobacter xylooxidans and characterization of metabolic product[J]. World Journal of Microbiology and Biotechnology, 26(10): 1727-1733.
DOI URL |
[34] |
WANG H Z, LOU J, GU H P, et al., 2016. Efficient biodegradation of phenanthrene by a novel strain Massilia sp. WF1 isolated from a PAH-contaminated soil[J]. Environmental Science and Pollution Research, 23(13): 13378-13388.
DOI URL |
[35] |
WONGWONGSEE W, CHAREANPAT P, PINYAKONG O, 2013. Abilities and genes for PAH biodegradation of bacteria isolated from mangrove sediments from the central of Thailand[J]. Marine Pollution Bulletin, 74(1): 95-104.
DOI URL |
[36] |
XIA W J, DU Z F, CUI Q F, et al., 2014. Biosurfactant produced by novel Pseudomonas sp. WJ 6 with biodegradation of n-alkanes and polycyclic aromatic hydrocarbons[J]. Journal of Hazardous Materials, 276: 489-498.
DOI URL |
[37] |
XU M, FU X G, GAO Y, et al., 2020. Characterization of a biosurfactant-producing bacteria isolated from Marine environment: Surface activity, chemical characterization and biodegradation[J]. Journal of Environmental Chemical Engineering, 8(5): 104277.
DOI URL |
[38] | 毕思宁, 王彦杰, 左豫虎, 2009. 生物表面活性剂排油圈检测方法的改进和应用[J]. 黑龙江八一农垦大学学报, 21(6): 58-60. |
BI S N, WANG Y J, ZUO Y H, 2009. Improvement and application of oil spreading to detect biosurfactant[J]. Journal of Heilongjiang Bayi Agricultural University, 21(6): 58-60. | |
[39] | 东秀珠, 蔡妙英, 2001. 常见细菌系统鉴定手册[M]. 北京: 科学出版社: 370-374. |
DONG X Z, CAI M Y, 2001. Manual for identification of common bacterial systems[M]. Beijing: Science Press: 370-374. | |
[40] | 顾海萍, 2016. Massilia sp. WF1和Phanerochaete chrysosporium对菲降解、吸附机理的研究[D]. 杭州: 浙江大学: 2-90. |
GU H P, 2016. Biodegradation and biosorption mechanisms of phenanthrene by Massilia sp. WF1 and Phanerochaete chrysosporium[D]. Hangzhou: Zhejiang University: 2-90. | |
[41] | 黄杨, 吴涓, 李玉成, 2015. 一株生物表面活性剂产生菌的筛选鉴定及其特性[J]. 环境工程学报, 9(5): 2522-2527. |
HUANG Y, WU J, LI Y C, 2015. Isolation, identifying and characterization of a biosurfactant-producing strain[J]. Chinese Journal of Environmental Engineering, 9(5): 2522-2527. | |
[42] | 李雪, 2018. 化工场地污染土壤中六六六的生物强化修复研究[D]. 南宁: 广西大学: 39. |
LI X, 2018. Study on bioremediation of HCHS in contaminated soil of chemical field[D]. Nanning: Guangxi University: 39. | |
[43] | 罗小艳, 2015. Massilia sp. WF1对菲的降解特性研究[D]. 杭州: 浙江大学: 14-18. |
LUO X Y, 2015. Studies on characteristics of phenanthrene degradation by Massilia sp. WF1[D]. Hangzhou: Zhejiang University: 14-18. | |
[44] | 马斌斌, 李少君, 马恒轶, 等, 2017. 一株海洋柴油降解菌的分离筛选鉴定及其生物表面活性剂特性分析[J]. 海洋环境科学, 36(5): 754-759. |
MA B B, LI S J, MA H Y, et al., 2017. Isolation, screening, and characterization of a diesel degrading darine bacteria and chemical characterization and properties of its biosurfactant[J]. Marine Environmental Science, 36(5): 754-759. | |
[45] | 钱翌, 梁昌金, 2013. 污染土壤中菲的修复技术研究进展[J]. 生态环境学报, 22(1): 176-182. |
QIAN Y, LIANG C J, 2013. Review on the remediation of phenanthrene in contaminated soils[J]. Ecology and Environmental Sciences, 22(1): 176-182. | |
[46] | 石金礼, 张言诚, 张力浩, 等, 2016. 生物表面活性剂产生菌的筛选及产物性能研究[J]. 农业环境科学学报, 35(9): 1717-1726. |
SHI J L, ZHANG Y C, ZHANG L H, et al., 2016. Screening of a biosurfactant-producing bacterium and biosurfactant characteristics[J]. Journal of Agro-Environment Science, 35(9): 1717-1726. | |
[47] | 颜湘波, 刘免, 王鑫, 等, 2014. 石油烃降解菌的细胞表面疏水性的研究进展[J]. 环境污染与防治, 36(7): 80-83. |
YAN X B, LIU M, WANG X, et al., 2014. Research progress of cell surface hydrophobicity of petroleum hydrocarbon degradation bacterium[J]. Environmental Pollution and Control, 36(7): 80-83. | |
[48] | 曾超, 周菁菁, 臧润民, 等, 2020. Bacillus siamensis ZCST-1菌发酵产物的排油能力及其特性[J]. 大连工业大学学报, 39(6): 396-400. |
ZENG C, ZHOU J J, ZANG R M, et al., 2020. Oil discharge capacity and characteristics of fermentation product of Bacillus siamensis ZCST-1[J]. Journal of Dalian Polytechnic University, 39(6): 396-400. | |
[49] | 张俊叶, 俞菲, 俞元春, 2017. 中国主要地区表层土壤多环芳烃含量及来源解析[J]. 生态环境学报, 26(6): 1059-1067. |
ZHANG J Y, YU F, YU Y C, 2017. Content and source apportionment of polycyclic aromatic hydrocarbons in surface soil in major areas of China[J]. Ecology and Environmental Sciences, 26(6): 1059-1067. |
[1] | 李语诗, 夏志业, 张蕾. 基于SSPs多情景目标的2030年成渝经济圈土地利用碳排放预测及其空间优化[J]. 生态环境学报, 2023, 32(3): 535-544. |
[2] | 吕贵方, 吴颖欣, 董长勋, 卢阳, 周玥, 曾文军, 吴文成. 腐殖酸和吐温-80对微米镍铁/多氯联苯体系的传质调控研究[J]. 生态环境学报, 2022, 31(7): 1456-1464. |
[3] | 程文远, 李法云, 吕建华, 吝美霞, 王玮. 碱改性向日葵秸秆生物炭对多环芳烃菲吸附特性研究[J]. 生态环境学报, 2022, 31(4): 824-834. |
[4] | 易浪, 孙颖, 尹少华, 魏晓. 生态安全格局构建:概念、框架与展望[J]. 生态环境学报, 2022, 31(4): 845-856. |
[5] | 武岩, 靳拓, 王跃飞, 贺鹏程, 罗军, 刘宏金, 张雷, 郭晓宇, 陈瑞英. 内蒙古阴山北麓马铃薯应用PBAT/PLA全生物降解地膜可行性分析[J]. 生态环境学报, 2021, 30(10): 2100-2108. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||