Ecology and Environment ›› 2023, Vol. 32 ›› Issue (1): 207-214.DOI: 10.16258/j.cnki.1674-5906.2023.01.022
• Reviews • Previous Articles
YUAN Linjiang*(), LI Mengbo, LENG Gang, ZHONG Bingbing, XIA Dapeng, WANG Jinghua
Received:
2022-11-17
Online:
2023-01-18
Published:
2023-04-06
Contact:
YUAN Linjiang
袁林江*(), 李梦博, 冷钢, 钟冰冰, 夏大朋, 王景华
通讯作者:
袁林江
基金资助:
CLC Number:
YUAN Linjiang, LI Mengbo, LENG Gang, ZHONG Bingbing, XIA Dapeng, WANG Jinghua. Synergistic Effect of Sulfate Reduction and Ammonia Oxidation in Anaerobic Environment[J]. Ecology and Environment, 2023, 32(1): 207-214.
袁林江, 李梦博, 冷钢, 钟冰冰, 夏大朋, 王景华. 厌氧环境下硫酸盐还原与氨氧化的协同作用[J]. 生态环境学报, 2023, 32(1): 207-214.
序号 | 文献 | 反应器 | 种泥 | NH4+-N去除率/% | SO42-去除率/% | 结论简述 |
---|---|---|---|---|---|---|
1 | Zhao et al., | 厌氧附着 生长反应器 | SRB | 43.35 | 58.74 | 在pH=7.8时高基质浓度、低COD浓度可以促进同步脱氮除硫;SRB和SRAO菌存在竞争关系 |
2 | Sabumon, | 上流式混合反应器 | 絮凝型延长曝气工艺污泥+SRB | 65.90-89.40 | 51.90-70.70 | 在缺氧条件下同时去除氨氮、硫酸盐、COD;COD浓度较高时需要抑制S2-浓度来提高基质的去除率 |
3 | Liu et al., | 无纺布旋转生物 接触式反应器 | ANAMMOX菌 | — | — | AnAOB具有同步脱氮除硫的生物潜能;发现了属于浮霉菌门的 “Anammoxoglobus sulfate” 菌株具有以硫酸盐为电子受体还原氨态氮的潜力 |
4 | Rikmann et al., | MBBR UASB | ANAMMOX菌+厌氧污泥 | — | — | SRAO是一个有关C、N、S之间的复杂反应;碳酸氢盐超过1000 mg·L-1时抑制SRAO;肼对UASB中SRAO有促进作用 |
5 | 马文娟等, | UASB | ANAMMOX菌 | — | — | 通过提高进水pH来快速启动SRAO;当pH>8.5时抑制AnAOB的活性 |
6 | 蒋永荣等, | UASB | ANAMMOX菌 | — | — | 粉煤灰对SRAO有促进作用,但需要时间驯化 |
7 | Zhang et al., | 循环流厌氧反应器 | 厌氧颗粒污泥+反硝化污泥 | 92.00 | 59.20 | 提高进水氮硫比会促进氨氮的去除;氨氮去除是硝化、反硝化、厌氧氨氧化、SRAO共同作用的结果 |
8 | Wu et al., | UASB-A/ O-ANAOR-ASBR | 垃圾渗滤液 | 98.00 | 53.00 | AnAOB结合SRAO菌进行同步脱氮除硫;DO对AnAOB和SRAO菌均有抑制作用 |
Table 1 Studies on process of SRAO
序号 | 文献 | 反应器 | 种泥 | NH4+-N去除率/% | SO42-去除率/% | 结论简述 |
---|---|---|---|---|---|---|
1 | Zhao et al., | 厌氧附着 生长反应器 | SRB | 43.35 | 58.74 | 在pH=7.8时高基质浓度、低COD浓度可以促进同步脱氮除硫;SRB和SRAO菌存在竞争关系 |
2 | Sabumon, | 上流式混合反应器 | 絮凝型延长曝气工艺污泥+SRB | 65.90-89.40 | 51.90-70.70 | 在缺氧条件下同时去除氨氮、硫酸盐、COD;COD浓度较高时需要抑制S2-浓度来提高基质的去除率 |
3 | Liu et al., | 无纺布旋转生物 接触式反应器 | ANAMMOX菌 | — | — | AnAOB具有同步脱氮除硫的生物潜能;发现了属于浮霉菌门的 “Anammoxoglobus sulfate” 菌株具有以硫酸盐为电子受体还原氨态氮的潜力 |
4 | Rikmann et al., | MBBR UASB | ANAMMOX菌+厌氧污泥 | — | — | SRAO是一个有关C、N、S之间的复杂反应;碳酸氢盐超过1000 mg·L-1时抑制SRAO;肼对UASB中SRAO有促进作用 |
5 | 马文娟等, | UASB | ANAMMOX菌 | — | — | 通过提高进水pH来快速启动SRAO;当pH>8.5时抑制AnAOB的活性 |
6 | 蒋永荣等, | UASB | ANAMMOX菌 | — | — | 粉煤灰对SRAO有促进作用,但需要时间驯化 |
7 | Zhang et al., | 循环流厌氧反应器 | 厌氧颗粒污泥+反硝化污泥 | 92.00 | 59.20 | 提高进水氮硫比会促进氨氮的去除;氨氮去除是硝化、反硝化、厌氧氨氧化、SRAO共同作用的结果 |
8 | Wu et al., | UASB-A/ O-ANAOR-ASBR | 垃圾渗滤液 | 98.00 | 53.00 | AnAOB结合SRAO菌进行同步脱氮除硫;DO对AnAOB和SRAO菌均有抑制作用 |
序号 | NH4+-N的电子受体 | 特点 | 文献 |
---|---|---|---|
1 | 硫酸盐逐步替代亚硝态氮 | 反应器内的功能菌群从厌氧氨氧化菌逐步向SRAO菌转变,不会使得AnAOB不适合环境而大量衰亡,但是启动时间较长 | 刘正川( |
2 | 亚硝态氮、硫酸盐 | 同时建立ANAMMOX、SRAO过程来提高氨态氮的去除 | 发现硫酸盐有助于提高厌氧氨氧化的效率 |
3 | 硫酸盐 | 可以直接筛选出能够进行SRAO过程的微生物,淘汰其他微生物 | 张丹丹( |
Table 2 Start-up methods of SRAO
序号 | NH4+-N的电子受体 | 特点 | 文献 |
---|---|---|---|
1 | 硫酸盐逐步替代亚硝态氮 | 反应器内的功能菌群从厌氧氨氧化菌逐步向SRAO菌转变,不会使得AnAOB不适合环境而大量衰亡,但是启动时间较长 | 刘正川( |
2 | 亚硝态氮、硫酸盐 | 同时建立ANAMMOX、SRAO过程来提高氨态氮的去除 | 发现硫酸盐有助于提高厌氧氨氧化的效率 |
3 | 硫酸盐 | 可以直接筛选出能够进行SRAO过程的微生物,淘汰其他微生物 | 张丹丹( |
[1] | BI Z, WANYAN D Q, LI X, et al., 2020. Biological conversion pathways of sulfate reduction ammonium oxidation in anammox consortia[J]. Frontiers of Environmental Science & Engineering, 14(3): 15-25. |
[2] | FDZ-POLANCO F, FDZ-POLANCO M, FERNANDEZ N, et al., 2001a. Simultaneous organic nitrogen and sulfate removal in an anaerobic GAC fluidised bed reactor[J]. Water Science and Technology: A journal of the International Association on Water Pollution Research, 44(4): 15-22. |
[3] |
FDZ-POLANCO F, FDZ-POLANCO M, FERNANDEZ N, et al., 2001b. New process for simultaneous removal of nitrogen and sulphur under anaerobic conditions[J]. Water Research, 35(4): 1111-1114.
DOI URL |
[4] |
GRUBBA D, MAJTACZ J, 2020. The influence of sulfate on anaerobic ammonium oxidation in a sequencing batch reactor[J]. Water, 12(11): 3004.
DOI URL |
[5] |
LIU S T, YANG F L, GONG Z, et al., 2008. Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal[J]. Bioresource Technology, 99(15): 6817-6825.
DOI PMID |
[6] | MADANI R M, LIANG J Y, CUI L, et al., 2022. Novel simultaneous removal of ammonium and sulfate by isolated bacillus cereus strain from sewage treatment plant[J]. Water, Air, & Soil Pollution, 233(6): 1-15. |
[7] |
PRACHAKITTIKUL P, WANTAWIN C, NOOPHAN P L, et al., 2016. ANAMMOX-like performances for nitrogen removal from ammonium-sulfate-rich wastewater in an anaerobic sequencing batch reactor[J]. Journal of Environmental Science and Health Part A, 51(3-4): 220-228.
DOI URL |
[8] |
QIN Y L, WEI Q Y, ZHANG Y Y, et al., 2021. Nitrogen removal from ammonium and sulfate-rich wastewater in an upflow anaerobic sludge bed reactor: performance and microbial community structure[J]. Ecotoxicology, 30(8): 1719-1730.
DOI |
[9] |
RIKMANN E, ZEKKER I, TOMINGAS M, et al., 2012. Sulfate-reducing anaerobic ammonium oxidation as a potential treatment method for high nitrogen-content wastewater[J]. Biodegradation, 23(4): 509-524.
DOI PMID |
[10] |
RIKMANN E, ZEKKER I, TOMINGAS M, et al., 2014. Comparison of sulfate-reducing and conventional anammox upflow anaerobic sludge blanket reactors[J]. Journal of Bioscience and Bioengineering, 118(4): 426-433.
DOI PMID |
[11] |
SABUMON P C, 2008. Development of a novel process for anoxic ammonia removal with sulphidogenesis[J]. Process Biochemistry, 43(9): 984-991.
DOI URL |
[12] |
WANG D P, LIU B, DING X C, et al., 2017. Performance evaluation and microbial community analysis of the function and fate of ammonia in a sulfate-reducing EGSB reactor[J]. Applied Microbiology and Biotechnology, 101(20): 7729-7739.
DOI PMID |
[13] |
WU L N, YAN Z B, LI J, et al., 2020. Low temperature advanced nitrogen and sulfate removal from landfill leachate by nitrite-anammox and sulfate-anammox[J]. Environmental Pollution, 259: 113763.
DOI URL |
[14] |
YANG Z Q, ZHOU S Q, SUN Y B, 2009. Start-up of simultaneous removal of ammonium and sulfate from an anaerobic ammonium oxidation (anammox) process in an anaerobic up-flow bioreactor[J]. Journal of Hazardous Materials, 169(1): 113-118.
DOI URL |
[15] |
ZHANG D D, CUI L, WANG H, et al., 2019. Study of sulfate-reducing ammonium oxidation process and its microbial community composition[J]. Water Science and Technology: A journal of the International Association on Water Pollution Research, 79(1): 137-144.
DOI URL |
[16] |
ZHANG D D, CUI L, ZHU H, et al., 2021. Treatment performance and microbial community under ammonium sulphate wastewater in a sulphate reducing ammonium oxidation process[J]. Environmental Technology, 42(19): 2982-2990.
DOI URL |
[17] | ZHAO Q I, LI W, YOU S J, 2006. Simultaneous removal of ammonium-nitrogen and sulphate from wastewaters with an anaerobic attached-growth bioreactor[J]. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 54(8): 27-35. |
[18] |
ZHU Y J, YANG S D, WANG W Z, et al., 2022. Applications of sponge iron and effects of organic carbon source on sulfate-reducing ammonium oxidation process[J]. International Journal of Environmental Research and Public Health, 19(4): 2283.
DOI URL |
[19] | 蔡靖, 蒋坚祥, 郑平, 2010. 一株硫酸盐型厌氧氨氧化菌的分离和鉴定[J]. 中国科学: 化学, 40(4): 421-426. |
CAI J, JIANG J X, ZHENG P, 2010. Isolation and identification of a sulphate type anammox strain[J]. Science in China: Chemistry, 40(4): 421-426. | |
[20] | 崔丽, 王慧, 黄开拓, 等, 2017. 无机条件下硫酸盐型厌氧氨氧化反应的特性[J]. 化工环保, 37(4): 415-420. |
CUI L, WANG H, HUANG K T, et al., 2017. Characteristics of sulfate-dependent anaerobic ammonium oxidation under inorganic carbon condition[J]. Environmental Protection of Chemical Industry, 37(4): 415-420. | |
[21] | 崔丽, 宋枭雄, 李琦, 2022. 以亚硝酸盐型厌氧氨氧化为基础启动硫酸盐型厌氧氨氧化研究[J]. 环境科学与管理, 47(1): 134-138. |
CUI L, SONG X X, LI Q, 2022. Sulfate reducing anaerobic ammonium oxidation based on nitrite anaerobic ammonium oxidation[J]. Environmental Science and Management, 47(1): 134-138. | |
[22] | 董石语, 毕贞, 张文静, 等, 2019. ANAMMOX体系中氨与硫酸盐的同步转化条件[J]. 环境科学, 40(8): 3691-3698. |
DONG S Y, BI Z, ZHANG W J, et al., 2019. Conditions for simultaneous conversion of ammonia and sulfate in ANAMMOX system[J]. Journal of Environmental Science, 40(8): 3691-3698. | |
[23] | 姜瑞, 曾红云, 王强, 2013. 氨氮废水处理技术研究进展[J]. 环境科学与管理, 38(6): 131-134. |
JIANG R, ZENG H Y, WANG Q, 2013. Research progress on treatment technology of ammonia nitrogen wastewater[J]. Environmental Science and Management, 38(6): 131-134. | |
[24] |
蒋永荣, 秦永丽, 刘可慧, 2016. 粉煤灰对硫酸盐型厌氧氨氧化驯化过程的影响[J]. 生态环境学报, 25(8): 1387-1394.
DOI URL |
JIANG Y R, QIN Y L, LIU K H, 2016. The effect of fly ash on domestication of sulfate-dependent anaerobic ammonium oxidation[J]. Journal of Ecological Environment, 25(8): 1387-1394. | |
[25] | 赖杨岚, 周少奇, 2010. 硫酸盐型厌氧氨氧化反应器的启动特征分析[J]. 中国给水排水, 26(15): 41-44. |
LAI Y L, ZHOU S Q, 2010. Analysis of start-up characteristics of sulfate type anammox reactor[J]. China Water & Wastewater, 26(15): 41-44. | |
[26] | 李军, 向韬, 郑驰骏, 2016a. HABR反应器硫酸盐型厌氧氨氧化启动特性研究[J]. 工业水处理, 36(11): 24-28. |
LI J, XIANG T, ZHENG C J, 2016a. Study on starting characteristics of sulfate anammox in HABR reactor[J]. Industrial Water Treatment, 36(11): 24-28. | |
[27] | 李军, 向韬, 郑驰骏, 2016b. 以SRB颗粒污泥为载体的硫酸盐型厌氧氨氧化的启动研究[J]. 安全与环境学报, 16(4): 306-311. |
LI J, XIANG T, ZHENG C J, 2016b. Initiation of sulfate anammox using SRB granular sludge as carrier[J]. Journal of Safety and Environment, 16(4): 306-311. | |
[28] | 李祥, 黄勇, 袁怡, 2010. 高氨氮、硫酸盐废水的生物脱氮除硫研究新进展[J]. 中国给水排水, 26(10): 5-8. |
LI X, HUANG Y, YUAN Y, 2010. New progress in biological denitrification and sulfur removal of high ammonia nitrogen and sulfate wastewater[J]. China Water & Wastewater, 26(10): 5-8. | |
[29] | 刘健峰, 2022. 不同氮素对厌氧消化系统的影响及其转化机制研究[D]. 昆明: 云南师范大学: 1-172. |
LIU J F, 2022. Effects of different nitrogen on anaerobic digestion system and its transformation mechanism[D]. Kunming: Yunnan Normal University: 1-172. | |
[30] | 刘阳, 2019. 高氨氮厌氧消化产甲烷反应器的运行特性及工艺优化[D]. 北京: 北京化工大学: 1-93. |
LIU Y, 2019. Operation characteristics and process optimization of high ammonia nitrogen anaerobic digestion methanogenic reactor[D]. Beijing: Beijing University of Chemical Technology: 1-93. | |
[31] | 刘俞辰, 王建辉, 闫娇, 2020. 同步硝化反硝化脱氮的影响因素分析[J]. 长春工程学院学报 (自然科学版), 21(4): 52-54, 64. |
LIU Y C, WANG J H, YAN J, 2020. Analysis of influencing factors of simultaneous nitrification and denitrification for nitrogen removal[J]. Journal of Changchun Institute of Technology (Natural Science Edition), 21(4): 52-54, 64. | |
[32] | 刘正川, 2015. 硫酸盐型厌氧氨氧化的启动及微生物群落结构解析[D]. 西安: 西安建筑科技大学: 1-68. |
LIU Z C, 2015. Initiation of sulfate anammox and analysis of microbial community structure[D]. Xi’an: Xi’an University of Architecture and Technology: 1-68. | |
[33] | 刘正川, 袁林江, 周国标, 2015. 从亚硝酸还原厌氧氨氧化转变为硫酸盐型厌氧氨氧化[J]. 环境科学, 36(9): 3345-3351. |
LIU Z C, YUAN L J, ZHOU G B, 2015. From nitrous acid reduction anammox to sulfate type anammox[J]. Journal of Environmental Science, 36(9): 3345-3351. | |
[34] | 马文娟, 赵东风, 刘春爽, 等, 2015. pH值促进硫酸盐型厌氧氨氧化的快速启动[J]. 化学与生物工程, 32(10): 17-20. |
MA W J, ZHAO D F, LIU C S, et al., 2015. pH values promote the rapid initiation of sulfate type anammox[J]. Chemical & Biological Engineering, 32(10): 17-20. | |
[35] | 倪哲, 潘朝智, 牛冬杰, 等, 2013. 两相厌氧消化工艺处理鸡粪[J]. 环境工程学报, 7(4): 1522-1526. |
NI Z, PAN Z Z, NIU D J, et al., 2013. Treatment of chicken manure by two-phase anaerobic digestion process[J]. Chinese Journal of Environmental Engineering, 7(4): 1522-1526. | |
[36] | 宋小康, 阴方芳, 丁敏, 等, 2022. 城市污水厌氧氨氧化脱氮面临的挑战与应对策略[J]. 环境工程, 40(4): 235-243. |
SONG X K, YIN F F, DING M, et al., 2022. Challenges and countermeasures of anaerobic ammonia oxidation for denitrification of municipal sewage[J]. Environmental Engineering, 40(4): 235-243. | |
[37] | 完颜德卿, 黄勇, 毕贞, 等, 2017. 硫酸盐还原氨氧化体系中基质转化途径[J]. 环境科学, 38(8): 3406-3414. |
WANYAN D Q, HUANG Y, BI Z, et al., 2017. Matrix transformation pathways in sulfate-reducing ammonia oxidation systems[J]. Environmental Science, 38(8): 3406-3414. | |
[38] | 王彤, 汪涵, 周明达, 等, 2021. 污水脱氮功能微生物的组学研究进展[J]. 微生物学通报, 48(12): 4844-4870. |
WANG T, WANG H, ZHOU M D, et al., 2021. Advances in omics of functional microorganisms for nitrogen removal in wastewater[J]. Microbiology China, 48(12): 4844-4870. | |
[39] | 吴岩, 2020. 短程硝化反硝化处理高浓氨氮废水效果及机理研究[D]. 北京: 北京建筑大学: 1-70. |
WU Y, 2020. Study on the effect and mechanism of short-cut nitrification and denitrification in the treatment of high concentration ammonia nitrogen wastewater[D]. Beijing: Beijing University of Civil Engineering and Architecture: 1-70. | |
[40] | 奚望, 薛同站, 李卫华, 等, 2022. 厌氧氨氧化应用于城市主流污水处理工艺的研究进展[J]. 净水技术, 41(1): 31-39, 76. |
XI W, XUE T Z, LI W H, et al., 2022. Research progress of application of anammox in mainstream process for urban sewage treatment[J]. Water Purification Technology, 41(1): 31-39, 76. | |
[41] | 杨世东, 祝彦均, 刘涵, 等, 2021. 不同氮硫浓度及氮硫比对硫酸盐还原厌氧氨氧化脱氮效果的影响[J]. 农业工程学报, 37(16): 199-204. |
YANG S D, ZHU Y J, LIU H, et al., 2021. Effects of different nitrogen-sulfur concentrations and nitrogen-sulfur ratio on denitrification by sulfate reduction anammox[J]. Transactions of the CSAE, 37(16): 199-204. | |
[42] | 袁林江, 赵嘉琪, 罗大成, 等, 2017. 利用有机废水中硫酸盐厌氧脱除其中氨态氮及相关机理研究[J]. 西安建筑科技大学学报(自然科学版), 49(5): 714-721. |
YUAN L J, ZHAO J Q, LUO D C, et al., 2017. Study on the removal of ammonia nitrogen with sulfate from organic wastewater by anaerobic fermentation and its mechanism[J]. Journal of Xi’an University of Architecture and Technology (Natural Science Edition), 49(5): 714-721. | |
[43] | 袁怡, 黄勇, 李祥, 等, 2013. 硫酸盐还原-氨氧化反应的特性研究[J]. 环境科学, 34(11): 4362-4369. |
YUAN Y, HUANG Y, LI X, et al., 2013. Study on the characteristics of sulfate reduction-ammonia oxidation reaction[J]. Environmental Science, 34(11): 4362-4369. | |
[44] | 张丹丹, 2020. 硫酸盐型厌氧氨氧化反应特性研究[D]. 沈阳: 沈阳工业大学: 1-58. |
ZHANG D D, 2020. Study on the reaction characteristics of sulfate type anaerobic ammonia oxidation[D]. Shenyang: Shenyang University of Technology: 1-58. | |
[45] | 张蕾, 郑平, 何玉辉, 等, 2008. 硫酸盐型厌氧氨氧化性能的研究[J]. 中国科学 (B辑: 化学), 38(12): 1113-1119. |
ZHANG L, ZHENG P, HE Y H, et al., 2008. Study on the performance of sulfate type anaerobic ammonia oxidation[J]. Science in China (Series B: Chemistry), 38 (12): 1113-1119. | |
[46] | 张丽, 黄勇, 袁怡, 等, 2013. 硫酸盐/氨的厌氧生物转化试验研究[J]. 环境科学, 34(11): 4356-4361. |
ZHANG L, HUANG Y, YUAN Y, et al., 2013. Experimental study on anaerobic biological transformation of sulfate/ammonia[J]. Environmental Science, 34(11): 4356-4361. | |
[47] | 张玉, 米铁柱, 甄毓, 等, 2018. 海洋沉积物中硫酸盐还原菌和硫氧化菌群落分析方法的比较[J]. 环境科学, 39(1): 438-449. |
ZHANG Y, MI T Z, ZHEN Y, et al., 2018. Analysis of sulfate-reducing and sulfur-oxidizing prokaryote community structures in marine sediments with different sequencing technologies[J]. Environmental Science, 39(1): 438-449. | |
[48] | 赵晴, 周浩, 吕慧, 等, 2021. AO-SBR短程硝化反硝化垃圾渗滤液预处理中试应用[J]. 环境工程学报, 15(2): 545-552. |
ZHAO Q, ZHOU H, LÜ H, et al., 2021. Pilot application of AO-SBR short-cut nitrification and denitrification for pretreatment of landfill leachate[J]. Chinese Journal of Environmental Engineering, 15(2): 545-552. | |
[49] | 赵庆良, 李巍, 徐永波, 等, 2007. 厌氧附着生长反应器处理氨氮和硫酸盐废水的研究[J]. 黑龙江大学自然科学学报, 24(4): 421-426. |
ZHAO Q L, LI W, XU Y B, et al., 2007. Study on the treatment of ammonia nitrogen and sulfate wastewater by anaerobic attached growth reactor[J]. Journal of Natural Sciences, Heilongjiang University, 24(4): 421-426. | |
[50] | 郑驰骏, 2016. HABR系统硫酸盐型厌氧氨氧化启动特性试验研究[D]. 沈阳: 沈阳建筑大学: 1-71. |
ZHENG C J, 2016. Experimental study on starting characteristics of sulfate anammox in HABR system[D]. Shenyang: Shenyang Jianzhu University: 1-71. | |
[51] | 朱家葆, 2021. 硫酸盐型厌氧氨氧化的脱氮性能验证研究[D]. 北京: 中国矿业大学: 1-61. |
ZHU J B, 2021. Verification of denitrification performance of sulfate type anammox[D]. Beijing: China University of Mining and Technology: 1-61. | |
[52] | 朱淼, 袁林江, 牛泽栋, 等, 2022. 升流式污泥床对无机废水中氮硫转化及相互影响研究[J]. 中国环境科学: 42(9): 4174-4182. |
ZHU M, YUAN L J, NIU Z D, et al., 2022. Study on nitrogen and sulfur conversion in inorganic wastewater by upwelling sludge bed and their interaction[J]. China Environmental Science: 42(9): 4174-4182. | |
[53] | 祝彦均, 2022. 碳源对硫酸盐型厌氧氨氧化的影响研究[D]. 吉林: 东北电力大学: 1-57. |
ZHU Y J, 2022. Study on the influence of carbon source on sulfate type anammox[D]. Jilin: Northeast Dianli University: 1-57. |
[1] | LI Jianhui, DANG Zheng, CHEN Lin. Spatial-temporal Characteristics of PM2.5 and Its Influencing Factors in the Yellow River Jiziwan Metropolitan Area [J]. Ecology and Environment, 2023, 32(4): 697-705. |
[2] | ZHANG Lin, QI Shi, ZHOU Piao, WU Bingchen, ZHANG Dai, ZHANG Yan. Study on Influencing Factors of Soil Organic Carbon Content in Mixed Broad-leaved and Coniferous Forests Land in Beijing Mountainous Areas [J]. Ecology and Environment, 2023, 32(3): 450-458. |
[3] | HE Yanhu, GONG Zhenjie, WU Haibin, CAI Yanpeng, YANG Zhifeng, CHEN Xiaohong. Spatiotemporal Evolution of Urban Eco-efficiency and Its Influencing Factors in Guangdong-Hong Kong-Macao Greater Bay Area [J]. Ecology and Environment, 2023, 32(3): 469-480. |
[4] | HAO Jinhu, WEI Wei, LI Shengnan, MA Muyuan, LI Xiaoxia, YANG Hongguo, JIANG Qiyu, CHAI Peidong. GEE Based Evaluation of the Spatial-temporal Pattern and Drivers of Long-term Water Body in Beijing-Tianjin-Hebei [J]. Ecology and Environment, 2023, 32(3): 556-566. |
[5] | ZHANG Li, LI Cheng, TAN Haoze, WEI Jiayi, CHENG Jiong, PENG Guixiang. Reduction Effect and Influencing Factors of Typical Urban Woodlands on Atmospheric Particulate Matter in Guangzhou [J]. Ecology and Environment, 2023, 32(2): 341-350. |
[6] | SU Yongsong, SONG Song, CHEN Ye, YE Ziqiang, ZHONG Runfei, WANG Zhaoyao. Temporal and Spatial Characteristics of Net Anthropogenic Nitrogen Input and Its Influencing Factors in the Pearl River Delta [J]. Ecology and Environment, 2022, 31(8): 1599-1609. |
[7] | JIANG Peng, QIN Mei’ou, LI Rongping, MENG Ying, YANG Feiyun, WEN Rihong, SUN Pei, FANG Yuan. Seasonal Variability of GPP and Its Influencing Factors in the Typical Ecosystems in China [J]. Ecology and Environment, 2022, 31(4): 643-651. |
[8] | ZHAO Anzhou, TIAN Xinle. Spatiotemporal Evolution and Influencing Factors of Vegetation Coverage in the Loess Plateau from 1986 to 2021 Based on GEE Platform [J]. Ecology and Environment, 2022, 31(11): 2124-2133. |
[9] | LI Liangliang, DAI Liangyu, GAO Weichang, ZHANG Shuyi, LIU Taoze. The Occurrence Characteristics and Influencing Factors of Residual Mulching Film of Typical Farmland with Plastic Film in Guizhou Province [J]. Ecology and Environment, 2022, 31(11): 2189-2197. |
[10] | LI Shengzeng, HAO Saimei, TAN Luyao, ZHANG Huaicheng, XU Biao, GU Shumao, PAN Guang, WANG Shuyan, YAN Huaizhong, ZHANG Guiqin. Characteristics of Spatiotemporal Variation, and Factors Influencing Secondary Components in PM2.5 in Ji'nan [J]. Ecology and Environment, 2022, 31(1): 100-109. |
[11] | LI Shaoning, TAO Xueying, LI Xiuhong, ZHAO Na, XU Xiaotian, LU Shaowei. Research Progress of Beneficial Biogenic Volatile Organic Compounds Released from Plants [J]. Ecology and Environment, 2022, 31(1): 187-195. |
[12] | CAI Yang, LI Wei, ZUO Xueyan, CUI Lijuan, LEI Yinru, ZHAO Xinsheng, ZHAI Xiajie, LI Jing, PAN Xu. Distribution Characteristics and Influencing Factors of PAHs in Yancheng Coastal Wetland Soil [J]. Ecology and Environment, 2021, 30(6): 1249-1259. |
[13] | TIAN Yichao, YANG Tang, XU Xin. Temporal and Spatial Distribution Characteristics and Influencing Factors of Net Primary Productivity of Vegetation in Typical Basin Entering the Sea in Beibu Gulf [J]. Ecology and Environment, 2021, 30(5): 938-948. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 335
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 366
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn