施氮量及抑制剂配比对双季稻生长期温室气体排放的影响

刘昭兵1.2, 纪雄辉1.2*, 彭华1.2, 石丽红1.2, 田发祥1.3, 石生伟4

1. 湖南省农业科学院土壤肥料研究所, 湖南 长沙 410125; 2. 湖南省农业科学院农业环境研究中心, 湖南 长沙 410125;

3. 中南大学研究生院隆平分院,湖南 长沙 410125; 4. 中国农业科学院农业环境与可持续发展研究所,北京 100081

摘要:采用静态箱-气相色谱法研究了南方稻田不同施氮量及抑制剂配比对双季稻生长期内 CH₄、N₂O 和 CO₂排放的影响。 结果表明,双季稻田施氮与抑制剂配合施用的 CH₄、N₂O 和 CO₂总排放量明显低于对照(常规施肥),其中 CH₄总排放量降 低了 7.6%~36.4%,N₂O 降低了 25.8%~29.9%,CO₂降低了 17.7%~30.4%。早稻收获后各处理土壤 NH₄⁺-N 和 NO₃⁻-N 含量存 在明显差异,添加抑制剂处理的土壤 NH₄⁺-N 含量均高于对照,增幅为 25.1%~77.0%,土壤 NO₃⁻-N 以早稻移栽前基施 N 240 kg·hm⁻²配合 12%NAM 和晚稻追施 N 30 kg·hm⁻²的处理比对照降低了 61.8%(*P* < 0.05),而基施 N 330 kg·hm⁻²配合 8‰NAM 处理可能因早稻施氮过量反而高于对照。表明合理的施氮量及抑制剂添加比例能有效提高土壤中 NH₄⁺-N 含量,减少 NO₃⁻-N 残留,从而达到降低双季稻期间稻田温室气体排放的效果,为进一步利用抑制剂(NAM)与 N、P、K 化肥合理配比并形成 复配肥,构建南方双季稻田温室气体减排的新型施肥模式提供技术支撑。

关键词:施氮量;抑制剂;双季稻;温室气体

中图分类号: X16 文献标识码: A 文章编号: 1674-5906 (2010) 04-0919-07

CO₂、CH₄和 N₂O 是导致全球气候变暖的几种 重要温室气体之一^[1]。虽然大气中 CH₄和 N₂O 的浓 度远低于 CO₂,但两者单分子的增温潜势却分别是 CO₂的 23 倍和 296 倍^[2]。稻田被认为是大气 CH₄ 和 N₂O 的重要排放源之一,其中 CH₄排放量占全球 总排放量的 5%~19%^[3],因此,稻田温室气体效应 已成为农业排放源中的研究热点。中国是世界上最 大的水稻生产国,水稻种植面积约占世界稻田总面 积的 22%,产量约占世界水稻产量的 38%^[4]。湖南 为我国水稻生产大省,也是南方典型的双季稻生产 区,观测双季稻期间稻田 CH₄、N₂O 和 CO₂排放对 进一步了解南方双季稻期间稻田温室气体排放特 征及规律具有重要意义。

目前国内外已有不少关于施氮肥对温室气体 排放影响的研究报道^[5-11],研究内容包括施肥方式 和肥料用量等对温室气体排放的影响,但在肥料中 添加抑制剂施用对稻田 CO₂、CH₄和 N₂O 三种温室 气体排放的影响尚鲜有报道。本文针对南方典型的 双季稻生产区,在田间条件下研究了不同施氮量及 抑制剂配比对双季稻生长期间稻田 CH₄、N₂O 和 CO₂排放的影响,以探索稻田温室气体减排新措施, 为进一步了解双季稻生长期内稻田温室气体排放 规律提供参考依据。

- 1 材料与方法
- 1.1 研究区域概况

试验地点位于湖南省长沙县干杉乡(N 28°8′31″, E113°12′5″),海拨42 m,年平均温度为 17.1 ℃,年降水量 1500 mm,年≥10 ℃积温 5 300~6 500 ℃,为南方典型的双季稻生产区。土壤 类型为第四纪红壤发育的红黄泥水稻土,化学性 状:有机质 28.6 g·kg⁻¹,全氮为 1.78 g·kg⁻¹,有效磷 10.6 mg·kg⁻¹,有效钾 315.0 mg·kg⁻¹, pH 5.90。

1.2 供试材料

抑制剂(商品名:NAM)成分中含有一定比例的脲酶抑制剂和硝化抑制剂,为沈阳中科新型肥料 有限公司生产。各处理施用量以每100 kg肥料含N、 P₂O₅、K₂O 各 40 kg 作为标准的抑制剂施用比例折 算,与肥料混匀后施用。供试早稻品种为中嘉早 7 号,2009 年 4 月 28 日插秧,7 月 16 日收割,晚稻 品种为岳优 360,2009 年 7 月 20 日插秧,10 月 3 日收割。

1.3 试验设计

采用田间小区试验,设置 4 个处理:1) N150+N180(常规施肥):早晚稻施氮量分别为150 kg·hm⁻²和180 kg·hm⁻²,均按基N 80%、蘖N 20% 的比例施入。2)N300+8‰NAM:氮用量为 300 kg·hm⁻²,并添加 8‰NAM 与 NPK 化肥混匀后作为 早稻—次性基肥施入。3)N330+8‰NAM:氮用量 为 330 kg·hm⁻²,添加 8‰NAM 与 NPK 肥混匀后作 为早稻—次性基肥施入。4)N240+N30+12‰NAM:

基金项目:国家科技支撑计划课题(2007BAD89B11; 2008BAD95B02)

收稿日期: 2010-02-23

作者简介:刘昭兵(1979年生),男,助理研究员,硕士,主要从事农业生态环境方面的研究。E-mail: liuzhaobing_168@yahoo.com.cn *通讯作者:纪雄辉,研究员,博士。E-mail: jixionghui@sohu.com

早稻施氮量为 240 kg·hm⁻², 并添加 12‰NAM 与 NPK 化肥混匀后作为一次性基肥施入, 晚稻分蘖期 追施氮 30 kg·hm⁻²。肥料品种为尿素、过磷酸钙和 氯化钾,所有处理早晚稻 P_2O_5 施用量均为 90 kg·hm⁻², 早晚稻 K_2O 施用量分别为 90 kg·hm⁻²和 135 kg·hm⁻²。每个处理重复 3 次, 共 12 个小区 (4 m×5 m=20 m²), 采用早稻翻耕,晚稻免耕, 除施肥外其 他田间管理措施按照当地习惯。

1.4 采样方法及测定指标

采用静态暗箱一气相色谱法监测温室气体排 放。采样箱为玻璃钢材料制成,每次采样前在底座 水槽内加水以保证密封,在箱体与底座密封0、5、 10、15、20 min 时采用 60 mL 注射器采集气样,同 时记录每个小区的水层深度。秧苗移栽后第二天开 始采样,时间为早上9:00~10:30,在水稻生长期 每隔3天采样1次,采样过程参考文献[12]。土壤 温度(5 cm)和箱内气体温度(离地面 10 cm)采 用双探头温度记录仪(HOBO Pro-U23003,美国) 测定。CH4和CO2浓度采用气相色谱(Agilent7890A, 美国 测定,检测器为火焰离子检测器,温度 200 ℃, 柱温 55 ℃, N₂O 检测器为电子捕获检测器,温度 为 330 ℃,标准气体由国家标准物质中心提供。早 稻收获时每小区取 0~10 cm 耕层混合样, 用 2 mol·L⁻¹ KCL 溶液(液土比 5:1) 振荡浸提 1 h 后用 流动分析仪(Foss, 瑞典)测定 NO3-N 和 NH4+-N 浓度,同步测定土壤水分含量以折算成干土含量。

1.5 计算及统计方法

稻田 CH₄、N₂O、CO₂ 排放通量计算公式如下^[13]:

 $F = \rho \cdot h \cdot dc/dt \cdot 273/(273+T)$

F 为排放通量(mg·m⁻²·h⁻¹), ρ为CH₄、N₂O、 CO₂ 在标准状态下的密度(kg·m⁻³), h 是采样箱高 度(m), dc/dt 为采样过程中采样箱内CH₄、N₂O、 CO₂ 的浓度变化率(ppmv·h⁻¹), T 为采样箱内的平 均温度(°C)。运用 Excel 2003 和 DPS 3.0 进行统计 和方差分析(LSD 法)。

2 结果与分析

2.1 不同氮肥用量添加抑制剂处理的土壤 NO₃--N 和 NH₄+-N 的质量分数差异

2.1.1 NO₃⁻-N

由表 1 可以看出,不同氮肥(尿素)用量添加 抑制剂处理对土壤 NO₃⁻N和NH4⁺-N的质量分数有 显著影响。以 N150+N180(常规施肥)处理为对照, 与其相比,N300+8‰NAM 处理的土壤 NO₃⁻N的质 量分数有所降低,降幅为 28.5%(*P*>0.05),虽然 该处理早稻施氮量高出对照 1 倍,但早稻收获后土 壤中 NO₃⁻N的质量分数却低于对照,说明添加 8‰

表 1 早稻收获后各处理土壤 NO₃--N 和 NH₄--N 的质量分数

d	early rice harveste	after e	n soil	contents	-N	and NH_4	NO ₃ ⁻	Table
-1	mg∙kg							

处理	NO ₃ ⁻ -N	$\mathrm{NH_4}^+$ -N
N150+N180	7.26±1.78ab	9.32±1.60b
N300+8‰NAM	5.19±2.27bc	11.66±1.87ab
N330+8‰NAM	9.62±2.17a	13.39±2.74ab
N240+N30+12‰NAM	2.77±0.50c	16.50±3.69a

同列数据后小写字母代表 LSD 法多重比较差异显著(P<0.05)。

抑制剂处理明显抑制了尿素的水解及 NH4⁺-N 的硝 化,减少了土壤中 NO3⁻-N 残留。而 N330+8‰NAM 处理的土壤 NO3⁻-N 的质量分数比对照处理增加 32.5% (*P* > 0.05),可能是该处理氮肥过量,虽然 添加 8‰抑制剂处理能够在一定程度上抑制尿素的 水解和 NH4⁺-N 的硝化,但土壤中仍有较多的 NO3⁻-N 残留。N240+N30+12‰NAM 处理的土壤 NO3⁻-N 的质量分数最低,比对照处理降低 61.8%(*P* < 0.05),说明添加 12‰抑制剂处理能显著减少土 壤中 NO3⁻-N 残留。

2.1.2 NH₄⁺-N

早稻收获后各处理土壤 NH4+-N 的质量分数情 况与 NO₃-N 有所不同, 表现为所有添加抑制剂处 理的土壤 NH4⁺-N 的质量分数均高于对照。其中 N300+8‰NAM 和 N330+8‰NAM 处理的土壤 NH₄⁺-N 的质量分数分别高出对照处理 25.1% (P> 0.05)和 43.7% (P>0.05),表明在抑制剂添加比 例相同的条件下,施氮量越高,土壤中 NH4+-N 的 质量分数也越高,可能是脲酶抑制剂延缓尿素水解 和硝化抑制剂控制铵硝化的综合作用所致。 N240+N30+12‰NAM 处理的土壤 NH4+-N 的质量 分数高出对照 77.0% (P < 0.05), 与 N300+8% NAM、 N330+8‰NAM 处理相比,虽然前者的早稻施氮量 明显低于后两个处理,但其土壤中 NH4+-N 的质量 分数却高于后两个处理,说明提高抑制剂与肥料的 用量配比,通过延缓尿素的水解和铵的硝化,可提 高土壤中 NH4⁺-N 的质量分数。

2.2 不同氮肥用量添加抑制剂处理的稻田 CH₄、 N₂O 和 CO₂ 排放动态及排放总量差异

2.2.1 早晚稻生长期田间气温、土温及水层厚度变化 由图1可以看出,早晚稻生长期土温和气温的 趋势基本一致,但早稻生长期温度较晚稻生长期波 动幅度大。从田间水分情况来看,早稻生长前期水 层较厚,后期落干,干湿交替较为频繁,晚稻生长 期水层厚度变化不大,趋势较为平缓。

2.2.2 CH4排放动态

早晚稻期间稻田 CH₄ 排放动态变化如图 2 所示。总体上看,各处理 CH₄ 排放主要集中在早稻生

Fig.1 Changes of air temperature, soil temperature and water layer thickness during double-rice growing season

Fig.2 The CH₄ emission dynamics from paddy field during double-rice growing season

长前期(分蘖期和抽穗期)和晚稻生长后期(灌浆 期和乳熟期)。早稻插秧后第11天各处理同时出现 CH4排放峰值, CH4强排放维持了 29 天, 在此期间 N150+N180、N300+8‰NAM、N330+8‰NAM 和 N240+N30+12‰NAM 处理的 CH4 排放量分别占相 应处理早稻排放总量的 58.9%、63.7%、48.3%和 66.4%, 排放通量表现为: N150+N180>N240+N30+ 12‰NAM>N300+8‰NAM>N330+8‰NAM。说明 添加抑制剂处理明显抑制了该时期的 CH₄ 排放。晚 稻各处理 CH4 排放峰值出现在插秧后第 49 天, CH4 强排放维持了 15 天, 较早稻时间短。该时期的排 放通量为: N150+N180> N240+N30+12‰NAM> N330+8‰NAM>N300+8‰NAM。表明添加抑制剂 处理同样对晚稻 CH₄排放有抑制作用。而该时期为 晚稻 CH4 排放的决定时期, 各处理 CH4 排放量分别 占晚稻排放总量的 52.8%、55.9%、43.1%和 19.4%。

早稻各处理 CH₄ 排放出现最大峰值的时间不同, N150+N180、N300+8‰NAM、N330+8‰NAM和 N240+N30+12‰NAM 处理分别出现在插秧后第

15 天、第 27 天、第 39 天和第 19 天。由此可见, 添加抑制剂处理延迟了早稻 CH₄排放出现最大峰值 的时间。晚稻除 N300+8‰NAM 处理的 CH₄排放最 大峰值出现在插秧后第 67 天,其余 3 个处理均出 现在插秧后第 49 天,说明晚稻已无明显差异。 2.2.3 N₂O 排放动态

由水稻生长期稻田N₂O排放动态可以看出,早 稻插秧后第15天N₂O排放开始出现明显峰值,强排 放维持了44天,这与该时期的水热状况相吻合(图 3)。在此期间,N150+N180、N300+8‰NAM、 N330+8‰NAM和N240+N30+12‰NAM处理的N₂O 排放量分别占相应处理早稻排放总量的72.4%、 64.3%、62.5%和63.9%。N₂O排放通量为: N150+N180>N330+8‰NAM>N240+N30+12‰NA M>N300+8‰NAM。说明添加抑制剂处理明显抑制 了早稻该时期的N₂O排放。晚稻N₂O排放很少,主 要出现在插秧后的1周左右,无明显规律,甚至出 现吸收现象。早稻各处理N₂O排放出现最大峰值的 时间基本一致,除N330+8‰NAM的最大峰值出现

rig.5 The N₂O emission dynamics from paddy field during double-field growin

在插秧后第58天外,其余3个处理的最大峰值均出 现在插秧后第50天。

2.2.4 CO2排放动态

采用静态箱所测的CO2排放通量实际为土壤排 放与植株吸收量之差。从水稻生长期稻田 CO₂排放 动态(图4)可以看出,早稻插秧后第35天开始出 现 CO₂ 排放峰值, CO₂ 强排放维持了 33 天, 在此 期间 N150+N180、N300+8‰NAM、N330+8‰NAM 和 N240+N30+12‰NAM 处理的 CO2 排放量分别占 相应处理早稻排放总量的 67.8%、65.5%、63.6%和 70.2%, 其排放通量为: N150+N180>N240+N30+ 12‰NAM>N300+8‰NAM>N330+8‰NAM。晚稻 在插秧后第 16 天开始出现 CO₂ 排放峰值,强排放 维持了 26 天, 期间的 CO₂ 排放通量为: N150 + N180> N240 + N30 + 12‰ NAM > N330 + 8‰ NAM > N300 + 8‰ NAM。此后 CO₂ 排放明显减弱, 甚至出现吸收现象。可见,添加抑制剂处理对早晚 稻这两个时期 CO₂ 排放的影响与 CH₄、N₂O 类似, 均表现为较常规施肥排放减少。

2.2.5 CH₄、N₂O 和 CO₂的排放总量

由表 2、3 可知,各处理早稻和晚稻的 CH4 排 放总量与两季的总排放量趋势一致,均为 N150+ N180>N240+N30+12‰NAM>N300+8‰NAM>N33 0+8‰NAM。其中添加抑制剂处理的 CH4 总排放量 均低于常规施肥处理,由此可见,添加抑制剂处理 有利于降低稻田 CH4 排放。就早稻生长季 CH4 排放 而言,随着早稻施氮量的增加,CH4 排放减少。在 抑制剂添加比例相同,氮用量不同的条件下, N330+8‰NAM 较 N300+8‰NAM 处理的 CH4 排放 总量要低,说明增加氮肥施用量反而降低 CH4 排放。

N₂O 在稻田排放量很少,早晚稻总排放量为: N330+8‰NAM>N150+N180>N240+N30+12‰NA M>N300+8‰NAM。由于试验中稻季之间 N₂O 排放 总量差异较大,早稻明显高于晚稻,因此早稻为 N₂O 排放的决定时期。从不同处理来看, N330+8‰NAM 处理的早稻施氮量最高,可能因早 稻期间稻田干湿交替较为频繁导致土壤中发生剧 烈的硝化与反硝化作用,N₂O 排放也随之较高。常 规施肥处理(N150+N180)因尿素水解和铵硝化未 被抑制,因此早稻期间的 N₂O 排放也较高。与常规

		CH_4		N ₂	0	CO_2	
稻季	处理	平均通量/ (mg·m ⁻² ·h ⁻¹)	总排量/ (kg·hm ⁻²)	平均通量/ (µg·m ⁻² ·h ⁻¹)	总排量/ (kg·hm ⁻²)	平均通量/ (mg·m ⁻² ·h ⁻¹)	总排量/ (kg·hm ⁻²)
早稻	N150+N180	5.13	97.34	98.22	1.86	1 548.7	29 364.1
	N300+8‰NAM	4.31	81.74	62.81	1.19	1 200.5	22 761.3
	N330+8‰NAM	3.17	60.12	100.65	1.91	1 200.9	22 770.0
	N240+N30+12‰NAM	4.63	87.85	66.88	1.27	1 467.8	27 829.1
晚稻	N150+N180	4.42	81.70	-11.15	-0.21	557.8	10 308.5
	N300+8‰NAM	3.75	69.35	-1.61	-0.03	454.9	8 405.7
	N330+8‰NAM	2.90	53.68	-3.01	-0.06	263.1	4 861.7
	N240+N30+12‰NAM	4.19	77.52	-2.10	-0.04	260.0	4 804.6

表 2 早晚稻期间不同氮肥用量添加 NAM 处理的 CH4、N2O 和 CO2 排放情况

表 3 早晚稻期间不同 N 用量添加 NAM 处理 的 CH₄、N₂O 和 CO₂ 排放总计

Table 3 Total CH₄, N₂O and CO₂ emissions in different amount of nitrogen and NAM ratio treatment during early-late rice growing season

ьктш	CH4/	减排/	N ₂ O/	减排/	CO ₂ /	减排/
处理	(kg·hm ⁻²)	%	(kg·hm ⁻²)	%	(kg·hm ⁻²)	%
N150+N180	179.0	_	1.66	_	39 672.6	_
N300+8‰NAM	151.1	15.6	1.16	29.9	31 167.0	21.4
N330+8‰NAM	113.8	36.4	1.85	-11.9	27 631.7	30.4
N240+N30+12%/NAM	165.4	7.6	1.23	25.8	32 633.7	17.7

施肥处理相比,减少施氮量和增加抑制剂用量配比 的早晚稻 N₂O 总排放量显著减少。

观测结果表明,早晚稻 CO₂的总排放量表现为: N150+N180>N240+N30+12‰NAM>N300+8‰NA M>N330+8‰NAM,与 CH₄的趋势相同。与常规施 肥处理相比,添加抑制剂处理的早晚稻 CO₂总排放 量明显减少。

3 讨论

(1)施氮量对温室气体排放的影响。大量施用 氮肥是全球大气 N₂O浓度增加的一个重要因素^[5-6]。 而施氮肥对稻田CH4排放的影响有增加和减少两种 结果,目前结论尚不一致^[14-16]。鲁春霞等^[7]的观测 结果表明,在不同施氮处理条件下,稻田 CH4 排放 强度随着施氮量的增加而减少, N₂O 表现出相同趋 势。本试验中添加抑制剂比例相同, 而施氮量不同 的两个处理的早晚稻 CH₄、N₂O 和 CO₂ 总排放量差 异明显, 其中 CH₄和 CO₂的趋势相同, 随施氮量的 增加而减少,这与王毅勇等^[17]的研究结果一致。而 N₂O 排放则随施氮量的增加而升高,这与大多数研 究者得出的随着施氮量的增加稻田 N₂O 排放增加 的结论相符^[18-20]。施氮量不同所导致的 CH4 排放差 异可能与土壤中 C/N 及水稻生长状况有关,适宜的 C/N 有利于产甲烷细菌生产 CH4, 而合理的施氮量 有利于水稻生长。施氮量对 N2O 排放的影响则更直 接,因为土壤中氮素含量状况与生成 N₂O 的硝化、

反硝化作用强度密切相关。而施氮量对 CO₂ 排放的 影响可能较为复杂,主要是影响了水稻生长及土壤 微生物的活性等。因此,施氮量是影响三种温室气 体排放的一个重要因子。

(2)抑制剂对温室气体排放的影响。试验结果表 明,在氮肥(尿素)与抑制剂(NAM)配合使用的 条件下,均表现为抑制稻田 CH4、N2O 和 CO2 的排 放。从不同试验处理来分析,施氮量与抑制剂用量配 比都是影响 CH₄、N₂O 和 CO₂ 排放的关键因子, 而 抑制剂是通过抑制尿素的水解和铵态氮的硝化来影 响三种温室气体的排放。抑制剂可能通过以下两种途 径对稻田 CH4 排放产生影响。一方面抑制剂与肥料 配施后对尿素水解具有明显的抑制效果,这种抑制作 用将会对水稻生长及土壤微生物产生重要影响。因为 植株参与条件下的稻田 CH4 排放与植株生长状况密 切相关, 植株直接影响了 CH4 的传输, 而抑制尿素 水解又将直接影响到微生物可利用的氮素,进而影响 微生物的活性等。另一方面,抑制剂抑制了土壤中铵 态氮的硝化,可能通过土壤中的铵态氮含量影响 CH4 排放。有研究表明, CH4排放量与土壤铵态氮含量之 间表现为显著的负相关^[21]。其解释是土壤铵态氮控 制稻田水土界面的 CH4 氧化^[22]。

抑制剂对 N₂O 排放的影响,也是通过抑制尿素 的水解和铵态氮的硝化来实现。本试验中,常规施 肥处理的稻田 N₂O 排放明显高于添加抑制剂处理。 由此推测,常规施肥处理可能是尿素水解以及铵硝 化没有得到抑制,导致在 N₂O 主要排放期出现剧烈 的硝化和反硝化作用,表现为 N₂O 强排放。而添加 抑制剂处理的 N₂O 排放相对较低,并且提高抑制剂 配比这种趋势更为明显。由此可见,添加抑制剂处 理对稻田 N₂O 排放具有一定抑制效果。添加抑制剂 处理同时对稻田 CO₂的排放也表现出一定的抑制作 用,这种影响机制较为复杂,主要可能是影响了土 壤微生物呼吸、植物呼吸以及植物光合作用,是三 者达到动态平衡后综合作用的结果,而这种影响也 是通过抑制尿素的水解和铵态氮的硝化来实现。

(3)施氮量与抑制剂对土壤中 NO₃-N 和 NH4⁺-N 含量的影响。已有大量研究表明,抑制剂 与氮肥结合使用可以降低氮素损失,提高氮肥利用 率[23-24]。脲酶抑制剂和硝化抑制剂协同作用可以对 尿素氮转化过程进行控制,其机理主要是抑制尿素 的水解和铵态氮的硝化。尿素施入土壤后首先转化 为铵态氮,从早稻收获后土壤中的铵态氮含量情况 来看,添加抑制剂处理的其含量明显高于常规施肥 处理,而土壤硝态氮含量趋势相反,这种趋势随抑 制剂添加比例的提高更加明显,说明抑制剂抑制了 土壤中铵态氮的硝化是导致各处理出现明显差异 的主要原因。而在抑制剂添加比例相同的条件下, 土壤中两种形态的氮素均表现出随施氮量的增加 而增加,说明两种形态的氮素也与施氮量密切相 关。因此,施氮量与抑制剂添加比例同为影响土壤 中 NO₃-N 和 NH₄⁺-N 含量的两个重要因子, 而合理 的氮用量与抑制剂用量配比可减少土壤中的 NO3-N 残留,提高 NH4+-N 含量。两种形态的氮素 中,NH4+-N易于被土壤胶体吸附因而移动性较小, 而 NO₃-N 的迁移性较强。因此,利用抑制剂与氮 肥(尿素)配合施用,可减少土壤中的 NO₃-N 残 留,提高 NH4⁺-N 含量,从而提高作物的氮素利用 率,降低 NO₃-N 流失所引起的环境污染风险。

4 结论

与常规施肥处理相比,早稻合理的氮用量与抑制剂添加比例能有效降低稻田土壤的 NO₃-N 残留,提高土壤中 NH4⁺-N 含量,从而降低氮肥施用可能引起的环境污染风险。同时能降低 CH4、N2O 和 CO2 在早晚稻主要排放期的排放通量,减少其双季稻期间的总排放量。可见,利用抑制剂与 N、P、K 化肥配合使用可在一定程度上起到减少土壤氮的流失,减排温室气体(CH4、N2O 和 CO2)的效果,从而构建稻田温室气体减排新技术体系。

参考文献:

[1] 冯裕华. 气候变暖的风险与对策[J]. 上海环境科学, 2000, 19(6): 272-275.

FENG Yuhua. Risks and countermeasures of climate changes[J]. Shanghai Environmental Sciences, 2000, 19(6): 272-275.

- [2] IPCC. Climate Change 2001: The Scientific Basis: Chapter 4: Atmosphere Chemistry and Greenhouse Gases[M]. Cambridge: Cambridge University Press, 2001.
- [3] IPCC. Climate change 2007: Couplings between changes in the climate system and biogeochemistry[R/OL]. http://www.ipcc.ch/pdf/ assessment-report/ar4/wg1/ar4-wg1-chapter7.pdf
- [4] 杨光明, 武文明, 沙丽清. 西双版纳地区稻田甲烷的排放通量[J]. 山地学报, 2007, 25(4): 461-468.
 YANG Guangming, WU Wenming, SHA Liqing. CH₄ emission from

paddy fields in Xishuangbanna, SW China[J]. Journal of Mountain Science, 2007, 25(4): 461-468.

- [5] MOSIER A, KROEZE C, NEVISON C, et al. Closing the global N₂O budget: nitrous oxide emissions through the agricultural nitrogen cycle: OECD/IPCC/IEA phase development of IPCC guidelines for national greenhouse gas inventory methodology[J]. Nutrient Cycling in Agroecosystems, 1998, 52: 225-248.
- [6] 田光明,何云峰,李勇先.水肥管理对稻田土壤甲烷和氧化亚氮排放的影响[J].土壤与环境,2002,11(3):294-298.
 TIAN Guangming, HE Yunfeng, LI Yongxian. Effect of water and fertilization management on emission of CH₄ and N₂O in paddy soil[J].
 Soil and Environmental Sciences, 2002, 11(3): 294-298.
- [7] 鲁春霞,吕耀,谢高地,等. 稻田温室气体排放的时空差异性与精 准施肥[J]. 资源科学, 2002, 24(6): 86-90.
 LU Chunxia, LÜ Yao, XIE Gaodi, et al. Different characteristics of greenhouse gas emission from rice paddy field and precision fertilization[J]. Resources Science, 2002, 24(6): 86-90.
 [8] 丁维新, 蔡祖聪, 氮肥对土壤甲烷产生的影响[J]. 农业环境科学学
- [6] J 並制, 茶租地: 氮加对上來中沉) 生的影响[J]. 农业环境种子子 报, 2003, 22(3): 380-383.
 DING Weixin, CAI Zucong. Effect of nitrogen fertilization on methane production in wetland soil[J]. Journal of Agro-Environment Science, 2003, 22(3): 380-383.
- [9] 刘合明,刘树庆.不同施氮水平对华北平原冬小麦土壤CO2通量的 影响[J]. 生态环境, 2008, 17(3): 1125-1129.
 LIU Heming, LIU Shuqing. Effect of different nitrogen levels on soil CO₂ fluxes of winter wheat in north China plain[J]. Ecology and Environment, 2008, 17(3): 1125-1129.
- [10] 吕琴, 闵航, 陈中云. 长期定位试验对水稻田土壤甲烷氧化活性和 甲烷排放通量的影响[J]. 植物营养与肥料学报, 2004, 10(6): 608-612.

LÜ Qin, MIN Hang, CHEN Zhongyun. Effect of long-term fertilization on the methane oxidization and the methane emission in paddy soil[J]. Plant Nutrition and Fertilizer Science, 2004, 10(6): 608-612.

[11] 李方敏, 樊小林. 控释肥对稻田 CH₄ 排放的影响[J]. 应用与环境生物学报, 2005, 11(4): 408-411.
 LI Fangmin, FAN Xiaolin. Effect of Controlled release fertilizers on methane emission from paddy field[J]. Chinese Journal of Applied & Environmental Biology, 2005, 11(4): 408-411.

- [12] 秦晓波,李玉娥,刘克樱,等.不同施肥处理稻田甲烷和氧化亚氮 排放特征[J].农业工程学报,2006,22(7):143-148.
 QIN Xiaobo, LI Yu'e, LIU Keying, et al. Methane and nitrous oxide emission from paddy field under different fertilization treatments[J]. Transactions of the CSAE, 2006, 22(7):143-148.
- [13] ZHENG Xunhua, WANG Mingxing, WANG Yuesi, et al. Comparision of manual and automatic methods for measurement of methane emission from rice paddy fields[J]. Advances Atmospheres Science, 1998, 15(4): 569-579.
- [14] AMARAL J A, KNOWLES R. Methane metabolism in a temperate swamp[J]. Applied Environmental Microbiology, 1994, 60(11): 3945-3951.
- [15] CAI Zucong, XING Guangxi, YAN Xiaoyuan, et al. Methane and nitrous oxide emission from rice paddy fields as affected by nitrogen fertilizers and water management[J]. Plant and Soil, 1997, 196: 7-14.
- [16] AERTS R, TOET S. Nutritional controls on carbon dioxide and methane emission from carex-dominated peat soils[J]. Soil Biology Biochemistry, 1997, 29: 1683-1690.

- [17] 王毅勇,陈卫卫,赵志春,等. 三江平原寒地稻田 CH₄、N₂O 排放特 征及排放量估算[J]. 农业工程学报,2008,24(10):170-176.
 WANG Yiyong, CHEN Weiwei, ZHAO Zhichun, et al. Characteristics and estimation of CH₄, N₂O emissions from cold paddy field in the Sanjiang Plain[J]. Transactions of the CSAE, 2008, 24(10): 170-176.
- [18] MA Jing, LI Xianglan, XU Hua, et al. Effects of nitrogen fertilizer and wheat straw application on CH₄ and N₂O emissions from a paddy rice field[J]. Australian Journal of Soil Research, 2007, 45(5): 359-367.
- [19] 黄树辉,蒋文伟,吕军,等. 氮肥和磷肥对稻田N₂O排放的影响[J]. 中国环境科学, 2005, 25(5): 540-543.
 HUANG Shuhui, JIANG Wenwei, LÜ Jun, et al. Influence of nitrogen and phosphorus fertilizers on N₂O emissions in rice fields[J]. China Environment Science, 2005, 25(5): 540-543.
- [20] LI Yue, LIN Erda, RAO Minjie. The effect of agricultural practices on methane and nitrous oxide emissions from rice field and pot experiment[J]. Nutrient Cycling in Agro-ecosystems, 2005, 49: 47-50.
- [21] 黄耀. 地气系统碳氮交换-从实验到模型[M]. 北京: 气象出版社, 2003, 116.

HUANG Yao. The carbon and nitrogen exchange in soil-atmosphere system from experiments to models[M]. Beijing: Publishing Company of Meteorology, 2003, 116.

- [22] XU Xingkai, WANG Yuesi, ZHENG Xunhua, et al. Methane emission from a simulated rice field ecosystem as influenced by hydroquinone and dicyandiamide[J]. The Science of the Total Environment, 2000, 263: 243-253.
- [23] 陈振华,陈利军,武志杰. 脲酶-硝化抑制剂对减缓尿素转化产物 氧化及淋溶的作用[J]. 应用生态学报,2005,16(2):238-242.
 CHEN Zhenghua, CHEN Lijun, WU Zhijie. Effects of urease and nitrification inhibitors on alleviating the oxidation and leaching of soil urea's hydrolyzed product ammonium[J]. Chinese Journal of Applied Ecology, 2005, 16(2): 238-242.
- [24] 徐星凯,周礼恺, OSWALD V C. 脲酶抑制剂/硝化抑制剂对植稻土 壤中尿素N行为的影响[J]. 生态学报, 2001, 21(10): 1682-1686.
 XU Xingkai, ZHOU Likai, OSWALD V C. Effect of urease/nitrification inhibitors on the behavior of urea-N in the soil planted to rice[J]. Acta Ecologica Sinica, 2001, 21(10): 1682-1686.

Effects of nitrogen amount and inhibitor ratio on greenhouse gas emission during double-rice growing season

LIU Zhaobing^{1,2}, JI Xionghui^{1,2*}, PENG hua^{1,2}, SHI Lihong^{1,2}, TIAN Faxiang^{1,3}, SHI Shengwei⁴

1. Soil and Fertilizer Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;

2. Agriculture and Environment Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China;

3. Longping Branch of Graduate School of Central South University, Changsha 410125, China;

4. Institute of Agro-Environment and Sustainable Development, Chinese Academy of Agriculture Sciences, Beijing 100081, China

Abstract: The effects of different amount of nitrogen and proportion of inhibitor on CH_4 , N_2O and CO_2 emissions from paddy field in Southern China was studied by using static chamber and modified gas chromatograph (Agilent 7890A) during double-rice growing season. The results showed that total CH_4 , N_2O and CO_2 emissions from paddy field for application combining nitrogen with inhibitors were significantly lower than the control (conventional fertilization) during double-rice growing season, which the total CH_4 emissions was reduced by 7.6%~36.4%, N_2O by 25.8%~29.9%, and CO_2 by 17.7%~30.4%. And soil NH_4^+ -N and NO_3^- -N content in each treatment was obviously different after early rice harvested. The treatments using inhibitor had higher NH_4^+ -N contents than the control, which was increased by 25.1%~77.0%. Soil NO_3^- -N content in the treatment of basal applied N 240 kg·hm⁻² combining with 12‰NAM before early rice transplanting and top dressed N 30 kg·hm⁻² at late rice tiller stage (N240+N30+12‰NAM) was decreased by 61.8% (P<0.05) compared with the control, while that in N330+8‰NAM treatment was higher than the control due to excessive nitrogen applied before early rice transplanting. It illustrates that a reasonable amount of nitrogen and proportion of inhibitors can effectively improve NH_4^+ -N content and reduce NO_3^- -N residues in soil, thereby it plays a key role in lowering greenhouse gas emissions from paddy field during double-rice growing season, meanwhile, it provides technical support for making further use of inhibitor (NAM) and N, P, K fertilizer to form a compound fertilizer, and builds new fertilization models with lowering greenhouse gas emissions in double rice paddy field in Southern China.

Key words: nitrogen amount; inhibitor; double-rice; greenhouse gas